--- dataset_info: features: - name: video_id dtype: string - name: video_link dtype: string - name: title dtype: string - name: text dtype: string - name: channel dtype: string - name: channel_id dtype: string - name: date dtype: string - name: license dtype: string - name: original_language dtype: string - name: language_id_method dtype: string - name: transcription_language dtype: string - name: word_count dtype: int64 - name: character_count dtype: int64 - name: source_language dtype: string splits: - name: train num_bytes: 298197594003 num_examples: 22684737 download_size: 162573072184 dataset_size: 298197594003 configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 task_categories: - text-generation tags: - conversational language: - en - fr - es - pt - de - ru - nl - tr - it pretty_name: YouTube Commons Re-upload --- ## YouTube Commons Re-upload This is a re-upload of [PleIAs' YouTube Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons), a valuable open dataset: > YouTube-Commons is a collection of audio transcripts of 2,063,066 videos shared on YouTube under a CC BY 4.0 license. > > **Content** > > The collection comprises 22,709,724 original and automatically translated transcripts from 3,156,703 videos (721,136 individual channels). Unfortunately, there are [problems](https://huggingface.co/datasets/PleIAs/YouTube-Commons/discussions/10) with loading YouTube Commons with Hugging Face Datasets. In order to alleviate those and to further process the dataset, I took the source parquet-files and reuploaded this fixed version to HuggingFace. ## Code The code used for this reupload. It makes use of a git clone of the [PleIAs/YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons) dataset. ```python from pathlib import Path from datasets import load_dataset, Dataset from tqdm import tqdm columns = set('''video_link video_id title text channel channel_id date license original_language language_id_method transcription_language source_language word_count character_count'''.split('\n')) def generate(): for filepath in tqdm(sorted(Path('/Path/To/PleIAs/YouTube-Commons').rglob('*.parquet'))): print(filepath) dataset = load_dataset("parquet", data_files={'train': str(filepath)}) for row in dataset['train']: keys = set(row) # Some of the files are missing one of these two columns. # Setting them to None results in an Arrow error, so we use '' instead if 'language_id_method' not in keys: row['language_id_method'] = '' if 'source_language' not in keys: row['source_language'] = '' if '__index_level_0__' in keys: del row['__index_level_0__'] if not set(row) == columns: raise ValueError(f'Error in columns: {set(row)}') yield row youtube = Dataset.from_generator(generate) youtube.push_to_hub('Rijgersberg/YouTube-Commons') ```