prompt
stringlengths 4
181
| completion
stringlengths 2
232
|
---|---|
list `lst` based on each element's number of occurrence
|
sorted(lst, key=lambda x: (-1 * c[x], lst.index(x)))
|
Get the value with the maximum length in each column in array `foo`
|
[max(len(str(x)) for x in line) for line in zip(*foo)]
|
get the count of each unique value in column `Country` of dataframe `df` and store in column `Sum of Accidents`
|
df.Country.value_counts().reset_index(name='Sum of Accidents')
|
alculat the difference between each row and the row previous to it in dataframe `data`
|
data.set_index('Date').diff()
|
ppend values `[3, 4]` to a set `a`
|
a.update([3, 4])
|
et every twostride far element to 1 starting from second element in array `a`
|
a[1::2] = -1
|
Get rank of rows from highest to lowest of dataframe `df`, grouped by value in column `group`, according to value in column `value`
|
df.groupby('group')['value'].rank(ascending=False)
|
vert js date object 'Tue, 22 Nov 2011 06:00:00 GMT' to python datetime
|
datetime.strptime('Tue, 22 Nov 2011 06:00:00 GMT', '%a, %d %b %Y %H:%M:%S %Z')
|
Convert a binary value '1633837924' to string
|
struct.pack('<I', 1633837924)
|
ppend string `foo` to list `list`
|
list.append('foo')
|
ert string `foo` at position `0` of list `list`
|
list.insert(0, 'foo')
|
vert keys in dictionary `thedict` into case insensitive
|
theset = set(k.lower() for k in thedict)
|
pad 'dog' up to a length of 5 characters with 'x'
|
"""{s:{c}^{n}}""".format(s='dog', n=5, c='x')
|
heck if type of variable `s` is a string
|
isinstance(s, str)
|
heck if type of a variable `s` is string
|
isinstance(s, str)
|
Convert list of dictionaries `L` into a flat dictionary
|
dict(pair for d in L for pair in list(d.items()))
|
erge a list of dictionaries in list `L` into a single dic
|
{k: v for d in L for k, v in list(d.items())}
|
a pandas data frame according to column `Peak` in ascending and `Weeks` in descending order
|
df.sort_values(['Peak', 'Weeks'], ascending=[True, False], inplace=True)
|
a pandas data frame by column `Peak` in ascending and `Weeks` in descending order
|
df.sort(['Peak', 'Weeks'], ascending=[True, False], inplace=True)
|
he code contained in string print('Hello')
|
eval("print('Hello')")
|
eating a list of dictionaries [{'A': 1, 'C': 4, 'B': 2, 'D': 4}, {'A': 1, 'C': 4, 'B': 1, 'D': 5}]
|
[{'A': 1, 'C': 4, 'B': 2, 'D': 4}, {'A': 1, 'C': 4, 'B': 1, 'D': 5}]
|
Creating a list of dictionaries in pytho
|
[{'A': 1, 'C': 4, 'B': 2, 'D': 4}, {'A': 1, 'C': 4, 'B': 1, 'D': 5}]
|
get all possible combination of items from 2dimensional list `a`
|
list(itertools.product(*a))
|
Get sum of values of columns 'Y1961', 'Y1962', 'Y1963' after group by on columns Country and Item_code in dataframe `df`.
|
df.groupby(['Country', 'Item_Code'])[['Y1961', 'Y1962', 'Y1963']].sum()
|
eate list `done` containing permutations of each element in list `[a, b, c, d]` with variable `x` as tuple
|
done = [(el, x) for el in [a, b, c, d]]
|
emove Nan values from array `x`
|
x = x[numpy.logical_not(numpy.isnan(x))]
|
emove first directory from path '/First/Second/Third/Fourth/Fifth'
|
os.path.join(*x.split(os.path.sep)[2:])
|
Replace `;` with `:` in a string `line`
|
line = line.replace(';', ':')
|
all bash command 'tar c my_dir | md5sum' with pipe
|
subprocess.call('tar c my_dir | md5sum', shell=True)
|
Convert a hex string `437c2123 ` according to ascii value.
|
"""437c2123""".decode('hex')
|
Get a list of all fields in class `User` that are marked `required`
|
[k for k, v in User._fields.items() if v.required]
|
emove column by index `[:, 0:2]` in dataframe `df`
|
df = df.ix[:, 0:2]
|
hange a string of integers `x` separated by spaces to a list of
|
x = map(int, x.split())
|
vert a string of integers `x` separated by spaces to a list of integer
|
x = [int(i) for i in x.split()]
|
find element by css selector input[onclick*='1 Bedroom Deluxe']
|
driver.find_element_by_css_selector("input[onclick*='1 Bedroom Deluxe']")
|
Python / Remove special character from string
|
re.sub('[^a-zA-Z0-9-_*.]', '', my_string)
|
display a pdf file that has been downloaded as `my_pdf.pdf`
|
webbrowser.open('file:///my_pdf.pdf')
|
eplace backslashes in string `result` with empty string ''
|
result = result.replace('\\', '')
|
emove backslashes from string `result`
|
result.replace('\\', '')
|
eplace value '' in any column of pandas dataframe to NaN
|
df.replace('-', 'NaN')
|
vert datetime object to date object in pytho
|
datetime.datetime.now().date()
|
w do I convert datetime to date (in Python)?
|
datetime.datetime.now().date()
|
get all subelements of an element `a` in an elementtree
|
[elem.tag for elem in a.iter()]
|
get all subelements of an element tree `a` excluding the root eleme
|
[elem.tag for elem in a.iter() if elem is not a]
|
w can I split and parse a string in Python?
|
"""2.7.0_bf4fda703454""".split('_')
|
ve dictionaries in list `lst` to the end of the list if value of key 'language' in each dictionary is not equal to 'en'
|
sorted(lst, key=lambda x: x['language'] != 'en')
|
heck if all values of a dictionary `your_dict` are zero `0`
|
all(value == 0 for value in list(your_dict.values()))
|
produce a pivot table as dataframe using column 'Y' in datafram `df` to form the axes of the resulting dataframe
|
df.pivot_table('Y', rows='X', cols='X2')
|
all `doSomething()` in a tryexcept without handling the exceptio
|
try:
doSomething()
except:
pass
|
all `doSomething()` in a tryexcept without handling the exceptio
|
try:
doSomething()
except Exception:
pass
|
get a sum of 4d array `M`
|
M.sum(axis=0).sum(axis=0)
|
Convert a datetime object `dt` to microtime
|
time.mktime(dt.timetuple()) + dt.microsecond / 1000000.0
|
elect all rows in dataframe `df` where the values of column 'columnX' is bigger than or equal to `x` and smaller than or equal to `y`
|
df[(x <= df['columnX']) & (df['columnX'] <= y)]
|
a list of lists `L` by index 2 of the inner l
|
sorted(L, key=itemgetter(2))
|
a list of lists `l` by index 2 of the inner l
|
l.sort(key=(lambda x: x[2]))
|
list `l` by index 2 of the item
|
sorted(l, key=(lambda x: x[2]))
|
a list of lists `list_to_sort` by indices 2,0,1 of the inner l
|
sorted_list = sorted(list_to_sort, key=itemgetter(2, 0, 1))
|
find rows of 2d array in 3d numpy array 'arr' if the row has value '[[0, 3], [3, 0]]'
|
np.argwhere(np.all(arr == [[0, 3], [3, 0]], axis=(1, 2)))
|
From multiIndexed dataframe `data` select columns `a` and `c` within each higher order column `one` and `two`
|
data.loc[:, (list(itertools.product(['one', 'two'], ['a', 'c'])))]
|
elect only specific columns 'a' and 'c' from a dataframe 'data' with multiindex colum
|
data.loc[:, ([('one', 'a'), ('one', 'c'), ('two', 'a'), ('two', 'c')])]
|
h a sharp, followed by letters (including accent characters) in string `str1` using a regex
|
hashtags = re.findall('#(\\w+)', str1, re.UNICODE)
|
Rename file from `src` to `dst`
|
os.rename(src, dst)
|
Get all texts and tags from a tag `strong` from etree tag `some_tag` using lxml
|
print(etree.tostring(some_tag.find('strong')))
|
Serialize dictionary `data` and its keys to a JSON formatted string
|
json.dumps({str(k): v for k, v in data.items()})
|
parse UTF8 encoded HTML response `response` to BeautifulSoup objec
|
soup = BeautifulSoup(response.read().decode('utf-8'))
|
delete file `filename`
|
os.remove(filename)
|
get the next value greatest to `2` from a list of numbers `num_list`
|
min([x for x in num_list if x > 2])
|
Replace each value in column 'prod_type' of dataframe `df` with string 'responsive'
|
df['prod_type'] = 'responsive'
|
list `lst` with positives coming before negatives with values sorted respectively
|
sorted(lst, key=lambda x: (x < 0, x))
|
get the date 6 months from today
|
six_months = (date.today() + relativedelta(months=(+ 6)))
|
get the date 1 month from today
|
(date(2010, 12, 31) + relativedelta(months=(+ 1)))
|
get the date 2 months from today
|
(date(2010, 12, 31) + relativedelta(months=(+ 2)))
|
alculate the date six months from the current date
|
print((datetime.date.today() + datetime.timedelta(((6 * 365) / 12))).isoformat())
|
get a list of keys of dictionary `things` sorted by the value of nested dictionary key 'weight'
|
sorted(list(things.keys()), key=lambda x: things[x]['weight'], reverse=True)
|
get all the values from a numpy array `a` excluding index 3
|
a[np.arange(len(a)) != 3]
|
delete all elements from a list `x` if a function `fn` taking value as parameter returns `0`
|
[x for x in lst if fn(x) != 0]
|
et dataframe `df` index using column 'month'
|
df.set_index('month')
|
ead lines from a csv file `./urlseu.csv` into a list of lists `arr`
|
arr = [line.split(',') for line in open('./urls-eu.csv')]
|
list comprehension that produces integers between 11 and 19
|
[i for i in range(100) if i > 10 if i < 20]
|
Get only digits from a string `strs`
|
"""""".join([c for c in strs if c.isdigit()])
|
plit a string `yas` based on tab '\t'
|
re.split('\\t+', yas.rstrip('\t'))
|
alar multiply matrix `a` by `b`
|
(a.T * b).T
|
emove trailing newline in string test string\n
|
'test string\n'.rstrip()
|
emove trailing newline in string 'test string \n\n'
|
'test string \n\n'.rstrip('\n')
|
emove newline in string `s`
|
s.strip()
|
emove newline in string `s` on the right side
|
s.rstrip()
|
emove newline in string `s` on the left side
|
s.lstrip()
|
emove newline in string 'Mac EOL\r'
|
'Mac EOL\r'.rstrip('\r\n')
|
emove newline in string 'Windows EOL\r\n' on the right side
|
'Windows EOL\r\n'.rstrip('\r\n')
|
emove newline in string 'Unix EOL\n' on the right side
|
'Unix EOL\n'.rstrip('\r\n')
|
emove newline in string Hello\n\n\n on the right side
|
'Hello\n\n\n'.rstrip('\n')
|
plit string `text` into chunks of 16 characters each
|
re.findall('.{,16}\\b', text)
|
Get a list comprehension in list of lists `X`
|
[[X[i][j] for j in range(len(X[i]))] for i in range(len(X))]
|
vert unicode string '\xd0\xbc\xd0\xb0\xd1\x80\xd0\xba\xd0\xb0' to byte string
|
'\xd0\xbc\xd0\xb0\xd1\x80\xd0\xba\xd0\xb0'.encode('latin-1')
|
plit dataframe `df` where the value of column `a` is equal to 'B'
|
df.groupby((df.a == 'B').shift(1).fillna(0).cumsum())
|
ave json output from a url ‘http://search.twitter.com/search.json?q=hi’ to file ‘hi.json’ in Python 2
|
urllib.request.urlretrieve('http://search.twitter.com/search.json?q=hi', 'hi.json')
|
Find indices of elements equal to zero from numpy array `x`
|
numpy.where((x == 0))[0]
|
flush output of python pr
|
sys.stdout.flush()
|
vert `i` to string
|
str(i)
|
vert `a` to string
|
a.__str__()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.