arabic-egy-cleaned / README.md
MAdel121's picture
Update README.md
e7d410a verified

Egyptian Arabic ASR Clean 72 h

Dataset Summary

This corpus contains ≈72 h of Egyptian‑Arabic speech aligned to text.
Audio has been resampled to 16 kHz mono WAV, transcripts are normalised Arabic (no diacritics, Tatweel, digits verbalised), and the data are split 80 / 10 / 10 into train / validation / test.

Supported Tasks and Leaderboards

Task Tags Notes
Automatic Speech Recognition asr, speech-recognition Primary use‑case
Forced Alignment / VAD alignment, vad Clips ≤ 25 s

Languages

The dataset is predominantly Egyptian Arabic (ar‑EG).
~85 % of recorded hours are male speakers; speaker IDs are unavailable.

Dataset Structure

Data Fields

Field Type Description
audio Audio Pointer to WAV @ 16 kHz
text string Normalised Arabic transcript
duration float Seconds (post‑resample)
dataset_source string One‑letter code A–D

Splits

Split Hours
train ≈57.6
validation ≈7.2
test ≈7.2

Source Data

Code Raw Hours Description
A ~465 Long clips, heavy overlap
B ~65 Similar to A, shorter
C ~5 Dual‑channel conversations
D ~2.5 YouTube excerpts
Other <5 Minor sources

Only ≈12 % of the original 570 h survived the cleaning pipeline.

Data Collection and Processing

  1. Format Unification – convert all audio to 16 kHz WAV.
  2. Deduplication – drop exact audio/text duplicates; remove nulls.
  3. Metadata Pruning – retain only core fields.
  4. Text Normalisation – strip diacritics, Tatweel, punctuation, Latin letters; verbalise digits; fix common glyph errors; run CAMeL‑Tools morphology checks.
  5. Alignment Diagnostics – compute chars/s and words/s; flag extreme values.
  6. Duration Filtering – keep clips 0.5–25 s.
  7. Shuffle & Split – 80 / 10 / 10 random split, uploaded as datasets.DatasetDict.

Usage Example

from datasets import load_dataset

ds = load_dataset("your-username/egyptian_arabic_asr_clean72h")
print(ds["train"][0]["audio"].sampling_rate)  # 16000
print(ds["train"][0]["text"])