metadata
language:
- zh
license: mit
pretty_name: RedNote Covert Advertisement Detection Dataset
tags:
- covert advertisement detection
- social-media
- image-text
- multimodal
- RedNote
- Xiaohongshu
datasets:
- Jingyi77/CHASM-Covert_Advertisement_on_RedNote
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: title
dtype: string
- name: description
dtype: string
- name: date
dtype: string
- name: comments
sequence:
dtype: string
- name: images
sequence:
dtype: string
- name: image_count
dtype: int32
- name: label
dtype: int8
- name: split
dtype: string
configs:
- config_name: Example
data_files:
- split: Example
path: example.parquet
- split: Train_1
path: train_part_1.parquet
- split: Train_2
path: train_part_2.parquet
- split: Train_3
path: train_part_3.parquet
- split: Train_4
path: train_part_4.parquet
- split: Test
path: test.parquet
- split: Validation
path: validation.parquet
size_categories:
- 10<n<100
RedNote Covert Advertisement Detection Dataset
This dataset contains posts from the RedNote platform for covert advertisement detection tasks.
Dataset Overview
Split | Posts | Ad Posts | Non-Ad Posts | Total Images |
---|---|---|---|---|
Train | 3493 | 426 | 3067 | 18543 |
Validation | 499 | 57 | 442 | 2678 |
Test | 1000 | 130 | 870 | 5103 |
Total | 4992 | 613 | 4379 | 26324 |
Note: The viewer shows a small example subset of the data (60 samples) for demonstration purposes. The complete dataset is available via WebDataset format in the repository.
Field Descriptions
The example parquet file contains the following fields:
id
: Unique identifier for each posttitle
: Post titledescription
: Post description contentdate
: Publication date (format: MM-DD)comments
: List of commentsimages
: List of base64-encoded imagesimage_count
: Number of imageslabel
: Label (0=non-advertisement, 1=advertisement)split
: Data split (train/validation/test)
Dataset Features
- Multimodal Data: Each post contains both text (title, description, comments) and images
- Real-world Data: Collected from actual social media posts on the RedNote platform
- Multiple Images: Each post may contain multiple images (average of 5.27 images per post)
Data Format
The complete dataset is stored in WebDataset format, with each sample containing:
- One or more image files (.jpg format)
- A JSON metadata file with the following fields:
id
: Sample IDtitle
: Titledescription
: Descriptiondate
: Datecomments
: List of commentslabel
: Label (0: non-advertisement, 1: advertisement)
Loading the Dataset
from datasets import load_dataset
# Load example dataset
dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote")
# Access a sample
example = dataset[0]
metadata = {
"id": example["id"],
"title": example["title"],
"description": example["description"],
"label": example["label"]
}
images = example["images"] # List of images
Citation
If you use this dataset in your research, please cite:
@dataset{CHASM,
author = {Jingyi Zheng, Tianyi Hu, Yule Liu, Zhen Sun, Zongmin Zhang, Wenhan Dong, Zifan Peng, Xinlei He},
title = {CHASM: Unveiling Covert Advertisements on Chinese Social Media},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Hub},
howpublished = {\url{https://huggingface.co/datasets/Jingyi77/CHASM-Covert_Advertisement_on_RedNote}}
}