File size: 3,973 Bytes
c3d641e
 
b9cc7e4
c3d641e
 
 
b9cc7e4
 
 
 
 
 
c3d641e
b9cc7e4
7dfe470
b9cc7e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dfe470
c84ac62
b9cc7e4
c84ac62
b9cc7e4
0870ac1
 
 
 
 
 
 
 
a2f4704
 
 
 
585c6e2
b9cc7e4
c3d641e
b8b4ac0
311bc5d
 
c3d641e
b8b4ac0
c3d641e
b8b4ac0
c3d641e
b8b4ac0
311bc5d
 
 
 
 
 
c3d641e
b9cc7e4
 
c3d641e
 
b9cc7e4
311bc5d
c3d641e
 
 
 
 
b9cc7e4
c3d641e
 
 
 
311bc5d
67b5717
311bc5d
 
 
67b5717
311bc5d
67b5717
b9cc7e4
67b5717
311bc5d
 
 
 
 
 
 
 
18feb52
311bc5d
67b5717
 
311bc5d
88122aa
b9cc7e4
 
c3d641e
311bc5d
b9cc7e4
311bc5d
 
 
 
 
 
 
 
c3d641e
 
 
 
 
 
05481cc
311bc5d
05481cc
 
c3d641e
 
1c898c7
c3d641e
b9cc7e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
language:
  - zh
license: mit
pretty_name: RedNote Covert Advertisement Detection Dataset
tags:
  - covert advertisement detection
  - social-media
  - image-text
  - multimodal
  - RedNote
  - Xiaohongshu
datasets:
  - Jingyi77/CHASM-Covert_Advertisement_on_RedNote
dataset_info:
  - config_name: default
    features:
      - name: id
        dtype: string
      - name: title
        dtype: string
      - name: description
        dtype: string
      - name: date
        dtype: string
      - name: comments
        sequence:
          dtype: string
      - name: images
        sequence:
          dtype: string
      - name: image_count
        dtype: int32
      - name: label
        dtype: int8
      - name: split
        dtype: string
configs:
  - config_name: Example
    data_files:
      - split: Example
        path: example.parquet
      - split: Train_1
        path: train_part_1.parquet
      - split: Train_2
        path: train_part_2.parquet
      - split: Train_3
        path: train_part_3.parquet
      - split: Train_4
        path: train_part_4.parquet
      - split: Test
        path: test.parquet
      - split: Validation
        path: validation.parquet
size_categories:
  - 10<n<100
---

<!-- @format -->

# RedNote Covert Advertisement Detection Dataset

This dataset contains posts from the RedNote platform for covert advertisement detection tasks.

## Dataset Overview

| Split      | Posts    | Ad Posts | Non-Ad Posts | Total Images |
| ---------- | -------- | -------- | ------------ | ------------ |
| Train      | 3493     | 426      | 3067         | 18543        |
| Validation | 499      | 57       | 442          | 2678         |
| Test       | 1000     | 130      | 870          | 5103         |
| **Total**  | **4992** | **613**  | **4379**     | **26324**    |

> Note: The viewer shows a **small example subset** of the data (60 samples) for demonstration purposes. The complete dataset is available via WebDataset format in the repository.

## Field Descriptions

The example parquet file contains the following fields:

- `id`: Unique identifier for each post
- `title`: Post title
- `description`: Post description content
- `date`: Publication date (format: MM-DD)
- `comments`: List of comments
- `images`: List of base64-encoded images
- `image_count`: Number of images
- `label`: Label (0=non-advertisement, 1=advertisement)
- `split`: Data split (train/validation/test)

## Dataset Features

- **Multimodal Data**: Each post contains both text (title, description, comments) and images
- **Real-world Data**: Collected from actual social media posts on the RedNote platform
- **Multiple Images**: Each post may contain multiple images (average of 5.27 images per post)

## Data Format

The complete dataset is stored in WebDataset format, with each sample containing:

1. One or more image files (.jpg format)
2. A JSON metadata file with the following fields:
   - `id`: Sample ID
   - `title`: Title
   - `description`: Description
   - `date`: Date
   - `comments`: List of comments
   - `label`: Label (0: non-advertisement, 1: advertisement)

## Loading the Dataset

```python
from datasets import load_dataset

# Load example dataset
dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote")

# Access a sample
example = dataset[0]
metadata = {
    "id": example["id"],
    "title": example["title"],
    "description": example["description"],
    "label": example["label"]
}
images = example["images"]  # List of images
```

## Citation

If you use this dataset in your research, please cite:

```
@dataset{CHASM,
  author = {Jingyi Zheng, Tianyi Hu, Yule Liu, Zhen Sun, Zongmin Zhang, Wenhan Dong, Zifan Peng, Xinlei He},
  title = {CHASM: Unveiling Covert Advertisements on Chinese Social Media},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/datasets/Jingyi77/CHASM-Covert_Advertisement_on_RedNote}}
}
```