Jingyi77 commited on
Commit
67b5717
·
1 Parent(s): 5904cfb

Create Hugging Face compatible dataset format and update README

Browse files
Files changed (2) hide show
  1. README.md +85 -18
  2. create_hf_dataset.py +164 -0
README.md CHANGED
@@ -14,11 +14,12 @@ task_categories:
14
  - image-classification
15
  task_ids:
16
  - sentiment-classification
 
17
  tags:
18
- - covert advertisement
19
  - social-media
20
  - xiaohongshu
21
- - RedNote
22
  pretty_name: CHASM - Covert Advertisement on RedNote
23
  ---
24
 
@@ -34,45 +35,111 @@ A dataset containing posts from Xiaohongshu (RedNote) for text classification ta
34
  - **Language**: Chinese
35
  - **License**: MIT
36
  - **Dataset Size**: Contains two classes (label_0 and label_1)
 
37
 
38
  ### Dataset Structure
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  Each data sample contains the following fields:
41
 
42
- - `title`: Post title
43
- - `description`: Post description
44
- - `date`: Publication date and location
45
- - `comments`: List of comments
46
- - `image`: List of image filenames
47
- - `label`: Classification label (0 or 1)
 
48
 
49
  ### Data Example
50
 
51
  ```json
52
  {
53
- "title": "Sample Title",
54
- "description": "Sample Description",
55
- "date": "09-13 Location",
56
- "comments": ["Comment 1", "Comment 2", ...],
57
- "image": ["image1.webp", "image2.webp", ...],
 
58
  "label": 0
59
  }
60
  ```
61
 
62
  ## Usage
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ```python
65
  from datasets import load_dataset
66
 
67
- # Load the dataset
68
  dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote")
69
 
70
- # View dataset information
71
  print(dataset)
72
 
73
- # Access data
74
- print(dataset['label_0'][0]) # View first data point from label_0
75
- print(dataset['label_1'][0]) # View first data point from label_1
76
  ```
77
 
78
  ## Data Preprocessing
 
14
  - image-classification
15
  task_ids:
16
  - sentiment-classification
17
+ - multi-class-classification
18
  tags:
19
+ - advertisement
20
  - social-media
21
  - xiaohongshu
22
+ - redbook
23
  pretty_name: CHASM - Covert Advertisement on RedNote
24
  ---
25
 
 
35
  - **Language**: Chinese
36
  - **License**: MIT
37
  - **Dataset Size**: Contains two classes (label_0 and label_1)
38
+ - **Splits**: Train (3089 samples), Validation (440 samples), Test (888 samples)
39
 
40
  ### Dataset Structure
41
 
42
+ 本数据集有两种格式:
43
+
44
+ #### 1. 原始目录格式 (Original Directory Structure)
45
+
46
+ 数据按照以下目录结构组织:
47
+
48
+ - `label_0/`: 非广告内容
49
+ - `label_1/`: 广告内容
50
+
51
+ 每个样本有一个独立的文件夹(如 `train_889/`),包含:
52
+
53
+ - `data.json`: 包含文本数据
54
+ - 多个图像文件(JPG/WEBP 格式)
55
+
56
+ #### 2. Hugging Face 格式 (Hugging Face Format)
57
+
58
+ 为了更好地与 Hugging Face 平台兼容,我们还提供了处理后的格式:
59
+
60
+ - `hf_format/train.csv` 和 `hf_format/train.json`: 训练集
61
+ - `hf_format/validation.csv` 和 `hf_format/validation.json`: 验证集
62
+ - `hf_format/test.csv` 和 `hf_format/test.json`: 测试集
63
+ - `hf_format/dataset_info.json`: 数据集元信息
64
+
65
+ ### 数据字段说明
66
+
67
  Each data sample contains the following fields:
68
 
69
+ - `id`: 样本唯一标识符
70
+ - `title`: 帖子标题
71
+ - `description`: 帖子描述
72
+ - `date`: 发布日期和位置
73
+ - `comments`: 评论列表
74
+ - `images`: 图像文件名列表
75
+ - `label`: 分类标签 (0: 非广告, 1: 广告)
76
 
77
  ### Data Example
78
 
79
  ```json
80
  {
81
+ "id": "train_889",
82
+ "title": "豆瓣9.2❗️几乎是全程震撼着读完的一本书❗️",
83
+ "description": "📚《人类新史》\n📝[美]大卫·格雷伯/[英]大卫·温格罗\n\n说实话我几乎是不读社科历史大部头的,一年能读上一本我都想夸自己厉害🤣所以看到这本书的厚度时心里真的发怵,担心自己读不下去,却没想到它出乎意料地好读,才读了百来页我就忍不住先来分享一波了,因为脑袋里信息量爆表了!!...",
84
+ "date": "编辑于 7 天前 湖南",
85
+ "comments": ["感谢推荐,已收藏", "你好厉害,能看英文版我看中文版才看了这么点就觉得很费劲", ...],
86
+ "images": ["1040g008317prti2fk45g48iu7h5portohqvdpdo!nd_dft_wlteh_webp_3_0.jpg", ...],
87
  "label": 0
88
  }
89
  ```
90
 
91
  ## Usage
92
 
93
+ 使用原始目录格式:
94
+
95
+ ```python
96
+ import os
97
+ import json
98
+ from glob import glob
99
+
100
+ # 遍历所有样本
101
+ for label_dir in ['label_0', 'label_1']:
102
+ for sample_dir in glob(f"{label_dir}/*"):
103
+ if os.path.isdir(sample_dir):
104
+ # 读取数据文件
105
+ with open(os.path.join(sample_dir, 'data.json'), 'r', encoding='utf-8') as f:
106
+ data = json.load(f)
107
+
108
+ # 获取图像文件
109
+ images = glob(os.path.join(sample_dir, '*.jpg'))
110
+
111
+ # 处理数据...
112
+ ```
113
+
114
+ 使用 Hugging Face 格式:
115
+
116
+ ```python
117
+ import pandas as pd
118
+
119
+ # 加载数据
120
+ train_df = pd.read_csv('hf_format/train.csv')
121
+ val_df = pd.read_csv('hf_format/validation.csv')
122
+ test_df = pd.read_csv('hf_format/test.csv')
123
+
124
+ # 或者使用JSON格式
125
+ import json
126
+ with open('hf_format/train.json', 'r', encoding='utf-8') as f:
127
+ train_data = json.load(f)
128
+ ```
129
+
130
+ 使用 Hugging Face datasets 库:
131
+
132
  ```python
133
  from datasets import load_dataset
134
 
135
+ # 加载数据集
136
  dataset = load_dataset("Jingyi77/CHASM-Covert_Advertisement_on_RedNote")
137
 
138
+ # 查看数据集信息
139
  print(dataset)
140
 
141
+ # 访问数据
142
+ print(dataset['train'][0]) # 查看训练集的第一个数据点
 
143
  ```
144
 
145
  ## Data Preprocessing
create_hf_dataset.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import os
3
+ import json
4
+ import pandas as pd
5
+ from pathlib import Path
6
+ from tqdm import tqdm
7
+
8
+ def convert_to_hf_format():
9
+ """将现有目录结构转换为Hugging Face兼容的格式"""
10
+ print("开始转换数据集格式...")
11
+
12
+ # 数据集路径
13
+ dataset_path = "/Users/zhengjingyi/Desktop/image_after"
14
+
15
+ # 创建输出目录
16
+ output_dir = os.path.join(dataset_path, "hf_format")
17
+ os.makedirs(output_dir, exist_ok=True)
18
+
19
+ # 为训练集、验证集和测试集创建空列表
20
+ train_data = []
21
+ val_data = []
22
+ test_data = []
23
+
24
+ # 处理 label_0 目录
25
+ label_0_path = os.path.join(dataset_path, "label_0")
26
+ print("处理 label_0 目录...")
27
+ for folder in tqdm(os.listdir(label_0_path)):
28
+ folder_path = os.path.join(label_0_path, folder)
29
+ if not os.path.isdir(folder_path):
30
+ continue
31
+
32
+ # 读取数据文件
33
+ data_file = os.path.join(folder_path, "data.json")
34
+ if not os.path.exists(data_file):
35
+ continue
36
+
37
+ try:
38
+ with open(data_file, 'r', encoding='utf-8') as f:
39
+ data = json.load(f)
40
+
41
+ # 获取图像文件列表
42
+ image_files = [f for f in os.listdir(folder_path) if f.endswith('.jpg') or f.endswith('.webp')]
43
+
44
+ # 创建样本
45
+ sample = {
46
+ 'id': folder,
47
+ 'title': data.get('title', ''),
48
+ 'description': data.get('description', ''),
49
+ 'date': data.get('date', ''),
50
+ 'comments': data.get('comments', []),
51
+ 'images': image_files,
52
+ 'label': 0
53
+ }
54
+
55
+ # 根据目录名分配到相应的数据集
56
+ if folder.startswith('train'):
57
+ train_data.append(sample)
58
+ elif folder.startswith('val'):
59
+ val_data.append(sample)
60
+ elif folder.startswith('test'):
61
+ test_data.append(sample)
62
+ except Exception as e:
63
+ print(f"处理 {folder} 时出错: {str(e)}")
64
+
65
+ # 处理 label_1 目录
66
+ label_1_path = os.path.join(dataset_path, "label_1")
67
+ print("处理 label_1 目录...")
68
+ for folder in tqdm(os.listdir(label_1_path)):
69
+ folder_path = os.path.join(label_1_path, folder)
70
+ if not os.path.isdir(folder_path):
71
+ continue
72
+
73
+ # 读取数据文件
74
+ data_file = os.path.join(folder_path, "data.json")
75
+ if not os.path.exists(data_file):
76
+ continue
77
+
78
+ try:
79
+ with open(data_file, 'r', encoding='utf-8') as f:
80
+ data = json.load(f)
81
+
82
+ # 获取图像文件列表
83
+ image_files = [f for f in os.listdir(folder_path) if f.endswith('.jpg') or f.endswith('.webp')]
84
+
85
+ # 创建样本
86
+ sample = {
87
+ 'id': folder,
88
+ 'title': data.get('title', ''),
89
+ 'description': data.get('description', ''),
90
+ 'date': data.get('date', ''),
91
+ 'comments': data.get('comments', []),
92
+ 'images': image_files,
93
+ 'label': 1
94
+ }
95
+
96
+ # 根据目录名分配到相应的数据集
97
+ if folder.startswith('train'):
98
+ train_data.append(sample)
99
+ elif folder.startswith('val'):
100
+ val_data.append(sample)
101
+ elif folder.startswith('test'):
102
+ test_data.append(sample)
103
+ except Exception as e:
104
+ print(f"处理 {folder} 时出错: {str(e)}")
105
+
106
+ # 将数据保存为CSV和JSON格式
107
+ print("保存数据...")
108
+
109
+ # 创建DataFrame
110
+ train_df = pd.DataFrame(train_data)
111
+ val_df = pd.DataFrame(val_data)
112
+ test_df = pd.DataFrame(test_data)
113
+
114
+ # 保存为CSV
115
+ train_df.to_csv(os.path.join(output_dir, "train.csv"), index=False)
116
+ val_df.to_csv(os.path.join(output_dir, "validation.csv"), index=False)
117
+ test_df.to_csv(os.path.join(output_dir, "test.csv"), index=False)
118
+
119
+ # 保存为JSON
120
+ with open(os.path.join(output_dir, "train.json"), 'w', encoding='utf-8') as f:
121
+ json.dump(train_data, f, ensure_ascii=False, indent=2)
122
+
123
+ with open(os.path.join(output_dir, "validation.json"), 'w', encoding='utf-8') as f:
124
+ json.dump(val_data, f, ensure_ascii=False, indent=2)
125
+
126
+ with open(os.path.join(output_dir, "test.json"), 'w', encoding='utf-8') as f:
127
+ json.dump(test_data, f, ensure_ascii=False, indent=2)
128
+
129
+ # 创建索引文件
130
+ with open(os.path.join(output_dir, "dataset_info.json"), 'w', encoding='utf-8') as f:
131
+ info = {
132
+ "name": "CHASM-Covert_Advertisement_on_RedNote",
133
+ "version": "1.0.0",
134
+ "description": "A dataset containing posts from Xiaohongshu (RedNote) for text classification tasks, specifically focused on identifying covert advertisements",
135
+ "splits": {
136
+ "train": {
137
+ "num_examples": len(train_data)
138
+ },
139
+ "validation": {
140
+ "num_examples": len(val_data)
141
+ },
142
+ "test": {
143
+ "num_examples": len(test_data)
144
+ }
145
+ },
146
+ "features": {
147
+ "id": {"dtype": "string", "description": "Unique ID for the sample"},
148
+ "title": {"dtype": "string", "description": "Post title"},
149
+ "description": {"dtype": "string", "description": "Post description"},
150
+ "date": {"dtype": "string", "description": "Publication date and location"},
151
+ "comments": {"sequence": {"dtype": "string"}, "description": "List of comments"},
152
+ "images": {"sequence": {"dtype": "string"}, "description": "List of image filenames"},
153
+ "label": {"dtype": "int32", "description": "Classification label (0 or 1)"}
154
+ }
155
+ }
156
+ json.dump(info, f, ensure_ascii=False, indent=2)
157
+
158
+ print(f"转换完成!数据已保存到 {output_dir}")
159
+ print(f"训练集: {len(train_data)} 样本")
160
+ print(f"验证集: {len(val_data)} 样本")
161
+ print(f"测试集: {len(test_data)} 样本")
162
+
163
+ if __name__ == "__main__":
164
+ convert_to_hf_format()