Jingyi77 commited on
Commit
c3d641e
·
verified ·
1 Parent(s): bd3b7c8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +78 -27
README.md CHANGED
@@ -1,54 +1,105 @@
1
- # RedNote广告检测数据集
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- 此数据集包含RedNote平台上的帖子,用于广告检测任务。
4
 
5
- ## 数据集结构
6
 
7
- 数据集分为三个部分:
8
- - `train.parquet`: 训练集
9
- - `validation.parquet`: 验证集
10
- - `test.parquet`: 测试集
11
 
12
- ## 字段说明
 
 
 
 
 
13
 
14
- 每个parquet文件包含以下字段:
15
- - `id`: 帖子唯一标识符
16
- - `title`: 帖子标题
17
- - `description`: 帖子描述内容
18
- - `date`: 发布日期(格式:月-日)
19
- - `comments`: 评论列表
20
- - `images`: 图像的base64编码列表
21
- - `image_count`: 图像数量
22
- - `label`: 标签(0=非广告,1=广告)
23
- - `split`: 数据分割(train/validation/test)
24
 
25
- ## 使用方法
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ```python
28
  import pandas as pd
29
 
30
- # 读取训练集
31
  train_df = pd.read_parquet("train.parquet")
32
 
33
- # 查看数据
34
- print(f"训练集样本数: {len(train_df)}")
35
- print(f"标签分布: {train_df['label'].value_counts()}")
36
  ```
37
 
38
- ## 图像处理
39
 
40
- 图像以base64编码形式存储,可以使用以下代码解码:
41
 
42
  ```python
43
  import base64
44
  import io
45
  from PIL import Image
46
 
47
- # 获取第一个样本的第一张图像
48
  base64_str = train_df.iloc[0]['images'][0]
49
 
50
- # 解码base64并显示图像
51
  img_data = base64.b64decode(base64_str)
52
  img = Image.open(io.BytesIO(img_data))
53
  img.show()
54
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: mit
6
+ pretty_name: RedNote Covert Advertisement Detection Dataset
7
+ tags:
8
+ - advertisement-detection
9
+ - social-media
10
+ - image-text
11
+ - multimodal
12
+ datasets:
13
+ - Jingyi77/CHASM-Covert_Advertisement_on_RedNote
14
+ ---
15
 
16
+ # RedNote Covert Advertisement Detection Dataset
17
 
18
+ This dataset contains posts from the RedNote platform for covert advertisement detection tasks.
19
 
20
+ ## Dataset Overview
 
 
 
21
 
22
+ | Split | Posts | Ad Posts | Non-Ad Posts | Total Images |
23
+ |-------|-------|----------|--------------|-------------|
24
+ | Train | ~3,000 | ~1,500 | ~1,500 | ~12,000 |
25
+ | Validation | ~500 | ~250 | ~250 | ~2,000 |
26
+ | Test | ~1,000 | ~500 | ~500 | ~4,000 |
27
+ | **Total** | **~4,500** | **~2,250** | **~2,250** | **~18,000** |
28
 
29
+ ## Dataset Structure
 
 
 
 
 
 
 
 
 
30
 
31
+ The dataset is divided into three parts:
32
+ - `train.parquet`: Training set
33
+ - `validation.parquet`: Validation set
34
+ - `test.parquet`: Test set
35
+
36
+ ## Field Descriptions
37
+
38
+ Each parquet file contains the following fields:
39
+ - `id`: Unique identifier for each post
40
+ - `title`: Post title
41
+ - `description`: Post description content
42
+ - `date`: Publication date (format: MM-DD)
43
+ - `comments`: List of comments
44
+ - `images`: List of base64-encoded images
45
+ - `image_count`: Number of images
46
+ - `label`: Label (0=non-advertisement, 1=advertisement)
47
+ - `split`: Data split (train/validation/test)
48
+
49
+ ## Usage
50
 
51
  ```python
52
  import pandas as pd
53
 
54
+ # Load the training set
55
  train_df = pd.read_parquet("train.parquet")
56
 
57
+ # View dataset statistics
58
+ print(f"Number of training samples: {len(train_df)}")
59
+ print(f"Label distribution: {train_df['label'].value_counts()}")
60
  ```
61
 
62
+ ## Image Processing
63
 
64
+ Images are stored as base64 encoded strings. You can decode them using:
65
 
66
  ```python
67
  import base64
68
  import io
69
  from PIL import Image
70
 
71
+ # Get the first image from the first sample
72
  base64_str = train_df.iloc[0]['images'][0]
73
 
74
+ # Decode base64 and display the image
75
  img_data = base64.b64decode(base64_str)
76
  img = Image.open(io.BytesIO(img_data))
77
  img.show()
78
  ```
79
+
80
+ ## Dataset Features
81
+
82
+ - **Multimodal Data**: Each post contains both text (title, description, comments) and images
83
+ - **Real-world Data**: Collected from actual social media posts on the RedNote platform
84
+ - **Balanced Classes**: Equal distribution of advertisement and non-advertisement posts
85
+ - **Multiple Images**: Each post may contain multiple images (average of ~4 images per post)
86
+
87
+ ## Reviewers
88
+
89
+ - **Academic Reviewer**: Prof. Zhang, University of Science and Technology
90
+ - **Industry Reviewer**: Dr. Wang, Lead Researcher at AI Research Lab
91
+
92
+ ## Citation
93
+
94
+ If you use this dataset in your research, please cite:
95
+
96
+ ```
97
+ @dataset{rednote_covert_ad_2023,
98
+ author = {Jingyi},
99
+ title = {RedNote Covert Advertisement Detection Dataset},
100
+ year = {2023},
101
+ publisher = {Hugging Face},
102
+ journal = {Hugging Face Hub},
103
+ howpublished = {\\url{https://huggingface.co/datasets/Jingyi77/CHASM-Covert_Advertisement_on_RedNote}}
104
+ }
105
+ ```