smollm3-configs / lighteval_tasks.py
loubnabnl's picture
loubnabnl HF Staff
Create lighteval_tasks.py
48c0fdc verified
import numpy as np
from functools import partial
import random
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.metrics.metrics import Metrics, SampleLevelMetric, MetricCategory, MetricUseCase, ExactMatches
from lighteval.metrics.dynamic_metrics import (
loglikelihood_acc_metric,
multilingual_quasi_exact_match_metric,
multilingual_quasi_f1_score_metric,
)
from lighteval.metrics.normalizations import LogProbCharNorm, LogProbPMINorm, LogProbTokenNorm
from lighteval.tasks.default_prompts import LETTER_INDICES
import lighteval.tasks.default_prompts as prompt
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.multilingual.adapters import (
agieval_adapter,
alghafa_adapter,
ceval_adapter,
get_m3exam_adapter,
get_mkqa_adapter,
sciqa_adapter,
thai_exams_adapter,
winogrand_adapter,
xcodah_adapter,
)
from lighteval.tasks.multilingual.utils.task_utils import get_metrics_for_formulation, normalize_subset
from lighteval.tasks.templates.boolq import get_boolq_prompt_function
from lighteval.tasks.templates.continuation import get_continuation_prompt_function
from lighteval.tasks.templates.copa import get_copa_prompt_function
from lighteval.tasks.templates.hellaswag import get_hellaswag_prompt_function
from lighteval.tasks.templates.multichoice import get_mcq_prompt_function
from lighteval.tasks.templates.nli import get_nli_prompt_function
from lighteval.tasks.templates.qa import get_qa_prompt_function
from lighteval.tasks.templates.utils.formulation import (
CFFormulation,
HybridFormulation,
MCFFormulation,
)
from lighteval.utils.language import Language
from lighteval.tasks.multilingual.tasks import TASKS_TABLE as ML_TASKS_TABLE
from .math_utils import parse_math_answer
TASKS_TABLE = []
TASKS_TABLE.extend(ML_TASKS_TABLE)
def bbh_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query="Question: " + line["input"] + "\nAnswer: ",
choices=[line["target"]],
gold_index=0,
)
def prompt_math(line, task_name: str = None):
return Doc(
task_name=task_name,
query=f"{line['problem']}\nPlease reason step by step, and put your final answer within \\boxed{{}}.\n\n",
gold_index=0,
choices=[f"{line['solution']}\n\n"],
)
def gpqa(line, task_name: str = None):
# Prompt template from simple-evals: https://github.com/openai/simple-evals/blob/83ed7640a7d9cd26849bcb3340125002ef14abbe/common.py#L14
GPQA_QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
{Question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
gold_index = random.randint(0, 3)
choices = [line["Incorrect Answer 1"], line["Incorrect Answer 2"], line["Incorrect Answer 3"]]
choices.insert(gold_index, line["Correct Answer"])
query = GPQA_QUERY_TEMPLATE.format(
A=choices[0], B=choices[1], C=choices[2], D=choices[3], Question=line["Question"]
)
return Doc(
task_name=task_name,
query=query,
choices=LETTER_INDICES[: len(choices)],
gold_index=gold_index,
instruction=query,
)
arc_tasks = [
LightevalTaskConfig(
name=f"arc_{formulation.name.lower()}:{subset.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["choices"]["text"],
"gold_idx": int(line["answerKey"]) - 1
if line["answerKey"].isdigit()
else LETTER_INDICES.index(line["answerKey"]),
},
formulation=formulation,
),
suite=("custom",),
hf_repo="allenai/ai2_arc",
hf_subset=f"ARC-{subset}",
hf_revision="210d026faf9955653af8916fad021475a3f00453",
trust_dataset=True,
evaluation_splits=("test",),
few_shots_split="train",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for subset in ["Easy", "Challenge"]
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(arc_tasks)
hellaswag_tasks = [
LightevalTaskConfig(
name=f"hellaswag_{formulation.name.lower()}",
suite=["custom"],
prompt_function=get_hellaswag_prompt_function(
language=Language.ENGLISH,
adapter=lambda line: {
"activity_label": line["activity_label"],
"ctx_a": line["ctx_a"],
"ctx_b": line["ctx_b"],
"continuations": line["endings"],
"gold_idx": int(line["label"]),
},
formulation=formulation,
),
hf_repo="Rowan/hellaswag",
hf_subset="default",
hf_revision="6002345709e0801764318f06bf06ce1e7d1a1fe3",
evaluation_splits=["validation"],
hf_avail_splits=["validation"],
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
),
trust_dataset=True,
)
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]
TASKS_TABLE.extend(hellaswag_tasks)
commonsense_qa_tasks = [
LightevalTaskConfig(
name=f"commonsenseqa_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["choices"]["text"],
"gold_idx": line["choices"]["label"].index(line["answerKey"].strip()),
},
formulation=formulation,
),
suite=("custom",),
hf_repo="tau/commonsense_qa",
hf_subset="default",
hf_revision="94630fe30dad47192a8546eb75f094926d47e155",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(commonsense_qa_tasks)
openbook_qa_tasks = [
LightevalTaskConfig(
name=f"openbookqa_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question_stem"],
"choices": line["choices"]["text"],
"gold_idx": LETTER_INDICES.index(line["answerKey"]),
},
formulation=formulation,
),
suite=["custom"],
hf_repo="allenai/openbookqa",
hf_subset="main",
hf_revision="388097ea7776314e93a529163e0fea805b8a6454",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(openbook_qa_tasks)
winogrande_tasks = [
LightevalTaskConfig(
name=f"winogrande_{formulation.name.lower()}",
suite=("custom",),
prompt_function=get_continuation_prompt_function(
Language.ENGLISH, partial(winogrand_adapter, Language.ENGLISH), formulation=formulation
),
hf_repo="allenai/winogrande",
hf_subset="winogrande_xl",
trust_dataset=True,
hf_revision="85ac5b5a3b7a930e22d590176e39460400d19e41",
metric=[
loglikelihood_acc_metric(normalization=None),
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(winogrande_tasks)
piqa_tasks = [
LightevalTaskConfig(
name=f"piqa_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["goal"],
"choices": [line['sol1'], line['sol2']],
"gold_idx": int(line["label"]),
},
formulation=formulation
),
suite=["custom"],
hf_repo="ybisk/piqa",
hf_revision="2e8ac2dffd59bac8c3c6714948f4c551a0848bb0",
hf_subset="plain_text",
trust_dataset=True,
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(piqa_tasks)
MMLU_SUBSETS = ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions']
mmlu_tasks = [
LightevalTaskConfig(
name=f"mmlu_{formulation.name.lower()}:{subset}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["choices"],
"gold_idx": int(line["answer"]),
},
formulation=formulation,
),
suite=("custom",),
hf_repo="cais/mmlu",
hf_subset=subset,
hf_revision="c30699e8356da336a370243923dbaf21066bb9fe",
trust_dataset=True,
evaluation_splits=("test",),
few_shots_split="dev",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for subset in MMLU_SUBSETS
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(mmlu_tasks)
mmlu_pro_tasks = [
LightevalTaskConfig(
name=f"mmlu_pro_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["options"],
"gold_idx": line["answer_index"],
},
formulation=formulation,
),
suite=("custom",),
hf_repo="TIGER-Lab/MMLU-Pro",
hf_subset="default",
hf_revision="3373e0b32277875b8db2aa555a333b78a08477ea",
trust_dataset=True,
evaluation_splits=("test",),
few_shots_split="validation",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(mmlu_pro_tasks)
gsm8k_tasks = [
LightevalTaskConfig(
name="gsm8k",
prompt_function=prompt.gsm8k,
suite=("custom",),
hf_repo="openai/gsm8k",
hf_subset="main",
hf_revision="e53f048856ff4f594e959d75785d2c2d37b678ee",
hf_avail_splits=["train", "test"],
evaluation_splits=["test"],
metric=[Metrics.quasi_exact_match_gsm8k],
generation_size=256,
stop_sequence=["Question:", "Question"],
few_shots_select="random_sampling_from_train",
)
]
TASKS_TABLE.extend(gsm8k_tasks)
quasi_exact_match_math = SampleLevelMetric(
metric_name="qem",
sample_level_fn=ExactMatches(
strip_strings=True,
normalize_pred=lambda text: parse_math_answer(text, "math"),
normalize_gold=lambda text: parse_math_answer(text, "math")
).compute,
category=MetricCategory.GENERATIVE,
use_case=MetricUseCase.MATH,
corpus_level_fn=np.mean,
higher_is_better=True,
)
GPQA_TASKS = [
LightevalTaskConfig(
name="gpqa",
suite=["lighteval"],
prompt_function=gpqa,
hf_repo="Idavidrein/gpqa",
hf_subset="gpqa_main",
hf_avail_splits=["train"],
evaluation_splits=["train"],
few_shots_split=None,
few_shots_select="random_sampling",
generation_size=1,
metric=[Metrics.loglikelihood_acc_single_token],
stop_sequence=["\n"],
trust_dataset=True,
version=0,
)
]
TASKS_TABLE.extend(GPQA_TASKS)
MATH_TASKS = [
LightevalTaskConfig(
name="math",
prompt_function=prompt_math,
suite=["custom"],
hf_repo="HuggingFaceTB/math_tasks",
hf_subset="math",
hf_revision="3d34f1076f279000b9315583dcdacfd288898283",
hf_avail_splits=["train", "test", "demo"],
evaluation_splits=["test"],
metric=[quasi_exact_match_math],
generation_size=1024,
stop_sequence=["\n\n"],
few_shots_split="demo",
few_shots_select="sequential",
trust_dataset=True,
)
]
TASKS_TABLE.extend(MATH_TASKS)
BBH_TASKS = [
LightevalTaskConfig(
name=f"bbh:{subset}",
prompt_function=bbh_prompt,
suite=["custom"],
hf_repo="lighteval/big_bench_hard",
hf_subset=subset,
hf_revision="80610173426f05e6f1448f047e2db4840a7dd899",
metric=[Metrics.exact_match],
hf_avail_splits=["train"],
# this is the only split available, obviously not used in training
evaluation_splits=["train"],
few_shots_split="train",
trust_dataset=True,
stop_sequence=["Question:", "Question"],
)
for subset in [
"boolean_expressions",
"causal_judgement",
"date_understanding",
"disambiguation_qa",
"dyck_languages",
"formal_fallacies",
"geometric_shapes",
"hyperbaton",
"logical_deduction_five_objects",
"logical_deduction_seven_objects",
"logical_deduction_three_objects",
"movie_recommendation",
"multistep_arithmetic_two",
"navigate",
"object_counting",
"penguins_in_a_table",
"reasoning_about_colored_objects",
"ruin_names",
"salient_translation_error_detection",
"snarks",
"sports_understanding",
"temporal_sequences",
"tracking_shuffled_objects_five_objects",
"tracking_shuffled_objects_seven_objects",
"tracking_shuffled_objects_three_objects",
"web_of_lies",
"word_sorting",
]
]
TASKS_TABLE.extend(BBH_TASKS)
# remove pmi_norm from all tasks to save on double inference
for task in TASKS_TABLE:
task.metric = [metric for metric in task.metric if metric.category != MetricCategory.MULTICHOICE_PMI]
if __name__ == "__main__":
print(t.name for t in TASKS_TABLE)
print(len(TASKS_TABLE))