File size: 17,234 Bytes
48c0fdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
import numpy as np
from functools import partial
import random
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
from lighteval.metrics.metrics import Metrics, SampleLevelMetric, MetricCategory, MetricUseCase, ExactMatches
from lighteval.metrics.dynamic_metrics import (
loglikelihood_acc_metric,
multilingual_quasi_exact_match_metric,
multilingual_quasi_f1_score_metric,
)
from lighteval.metrics.normalizations import LogProbCharNorm, LogProbPMINorm, LogProbTokenNorm
from lighteval.tasks.default_prompts import LETTER_INDICES
import lighteval.tasks.default_prompts as prompt
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.multilingual.adapters import (
agieval_adapter,
alghafa_adapter,
ceval_adapter,
get_m3exam_adapter,
get_mkqa_adapter,
sciqa_adapter,
thai_exams_adapter,
winogrand_adapter,
xcodah_adapter,
)
from lighteval.tasks.multilingual.utils.task_utils import get_metrics_for_formulation, normalize_subset
from lighteval.tasks.templates.boolq import get_boolq_prompt_function
from lighteval.tasks.templates.continuation import get_continuation_prompt_function
from lighteval.tasks.templates.copa import get_copa_prompt_function
from lighteval.tasks.templates.hellaswag import get_hellaswag_prompt_function
from lighteval.tasks.templates.multichoice import get_mcq_prompt_function
from lighteval.tasks.templates.nli import get_nli_prompt_function
from lighteval.tasks.templates.qa import get_qa_prompt_function
from lighteval.tasks.templates.utils.formulation import (
CFFormulation,
HybridFormulation,
MCFFormulation,
)
from lighteval.utils.language import Language
from lighteval.tasks.multilingual.tasks import TASKS_TABLE as ML_TASKS_TABLE
from .math_utils import parse_math_answer
TASKS_TABLE = []
TASKS_TABLE.extend(ML_TASKS_TABLE)
def bbh_prompt(line, task_name: str = None):
return Doc(
task_name=task_name,
query="Question: " + line["input"] + "\nAnswer: ",
choices=[line["target"]],
gold_index=0,
)
def prompt_math(line, task_name: str = None):
return Doc(
task_name=task_name,
query=f"{line['problem']}\nPlease reason step by step, and put your final answer within \\boxed{{}}.\n\n",
gold_index=0,
choices=[f"{line['solution']}\n\n"],
)
def gpqa(line, task_name: str = None):
# Prompt template from simple-evals: https://github.com/openai/simple-evals/blob/83ed7640a7d9cd26849bcb3340125002ef14abbe/common.py#L14
GPQA_QUERY_TEMPLATE = """
Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
{Question}
A) {A}
B) {B}
C) {C}
D) {D}
""".strip()
gold_index = random.randint(0, 3)
choices = [line["Incorrect Answer 1"], line["Incorrect Answer 2"], line["Incorrect Answer 3"]]
choices.insert(gold_index, line["Correct Answer"])
query = GPQA_QUERY_TEMPLATE.format(
A=choices[0], B=choices[1], C=choices[2], D=choices[3], Question=line["Question"]
)
return Doc(
task_name=task_name,
query=query,
choices=LETTER_INDICES[: len(choices)],
gold_index=gold_index,
instruction=query,
)
arc_tasks = [
LightevalTaskConfig(
name=f"arc_{formulation.name.lower()}:{subset.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["choices"]["text"],
"gold_idx": int(line["answerKey"]) - 1
if line["answerKey"].isdigit()
else LETTER_INDICES.index(line["answerKey"]),
},
formulation=formulation,
),
suite=("custom",),
hf_repo="allenai/ai2_arc",
hf_subset=f"ARC-{subset}",
hf_revision="210d026faf9955653af8916fad021475a3f00453",
trust_dataset=True,
evaluation_splits=("test",),
few_shots_split="train",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for subset in ["Easy", "Challenge"]
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(arc_tasks)
hellaswag_tasks = [
LightevalTaskConfig(
name=f"hellaswag_{formulation.name.lower()}",
suite=["custom"],
prompt_function=get_hellaswag_prompt_function(
language=Language.ENGLISH,
adapter=lambda line: {
"activity_label": line["activity_label"],
"ctx_a": line["ctx_a"],
"ctx_b": line["ctx_b"],
"continuations": line["endings"],
"gold_idx": int(line["label"]),
},
formulation=formulation,
),
hf_repo="Rowan/hellaswag",
hf_subset="default",
hf_revision="6002345709e0801764318f06bf06ce1e7d1a1fe3",
evaluation_splits=["validation"],
hf_avail_splits=["validation"],
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
),
trust_dataset=True,
)
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
]
TASKS_TABLE.extend(hellaswag_tasks)
commonsense_qa_tasks = [
LightevalTaskConfig(
name=f"commonsenseqa_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["choices"]["text"],
"gold_idx": line["choices"]["label"].index(line["answerKey"].strip()),
},
formulation=formulation,
),
suite=("custom",),
hf_repo="tau/commonsense_qa",
hf_subset="default",
hf_revision="94630fe30dad47192a8546eb75f094926d47e155",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(commonsense_qa_tasks)
openbook_qa_tasks = [
LightevalTaskConfig(
name=f"openbookqa_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question_stem"],
"choices": line["choices"]["text"],
"gold_idx": LETTER_INDICES.index(line["answerKey"]),
},
formulation=formulation,
),
suite=["custom"],
hf_repo="allenai/openbookqa",
hf_subset="main",
hf_revision="388097ea7776314e93a529163e0fea805b8a6454",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(openbook_qa_tasks)
winogrande_tasks = [
LightevalTaskConfig(
name=f"winogrande_{formulation.name.lower()}",
suite=("custom",),
prompt_function=get_continuation_prompt_function(
Language.ENGLISH, partial(winogrand_adapter, Language.ENGLISH), formulation=formulation
),
hf_repo="allenai/winogrande",
hf_subset="winogrande_xl",
trust_dataset=True,
hf_revision="85ac5b5a3b7a930e22d590176e39460400d19e41",
metric=[
loglikelihood_acc_metric(normalization=None),
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(winogrande_tasks)
piqa_tasks = [
LightevalTaskConfig(
name=f"piqa_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["goal"],
"choices": [line['sol1'], line['sol2']],
"gold_idx": int(line["label"]),
},
formulation=formulation
),
suite=["custom"],
hf_repo="ybisk/piqa",
hf_revision="2e8ac2dffd59bac8c3c6714948f4c551a0848bb0",
hf_subset="plain_text",
trust_dataset=True,
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(piqa_tasks)
MMLU_SUBSETS = ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions']
mmlu_tasks = [
LightevalTaskConfig(
name=f"mmlu_{formulation.name.lower()}:{subset}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["choices"],
"gold_idx": int(line["answer"]),
},
formulation=formulation,
),
suite=("custom",),
hf_repo="cais/mmlu",
hf_subset=subset,
hf_revision="c30699e8356da336a370243923dbaf21066bb9fe",
trust_dataset=True,
evaluation_splits=("test",),
few_shots_split="dev",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for subset in MMLU_SUBSETS
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(mmlu_tasks)
mmlu_pro_tasks = [
LightevalTaskConfig(
name=f"mmlu_pro_{formulation.name.lower()}",
prompt_function=get_mcq_prompt_function(
Language.ENGLISH,
lambda line: {
"question": line["question"],
"choices": line["options"],
"gold_idx": line["answer_index"],
},
formulation=formulation,
),
suite=("custom",),
hf_repo="TIGER-Lab/MMLU-Pro",
hf_subset="default",
hf_revision="3373e0b32277875b8db2aa555a333b78a08477ea",
trust_dataset=True,
evaluation_splits=("test",),
few_shots_split="validation",
metric=get_metrics_for_formulation(
formulation,
[
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
],
),
)
for formulation in [
MCFFormulation(),
CFFormulation(),
HybridFormulation(),
]
]
TASKS_TABLE.extend(mmlu_pro_tasks)
gsm8k_tasks = [
LightevalTaskConfig(
name="gsm8k",
prompt_function=prompt.gsm8k,
suite=("custom",),
hf_repo="openai/gsm8k",
hf_subset="main",
hf_revision="e53f048856ff4f594e959d75785d2c2d37b678ee",
hf_avail_splits=["train", "test"],
evaluation_splits=["test"],
metric=[Metrics.quasi_exact_match_gsm8k],
generation_size=256,
stop_sequence=["Question:", "Question"],
few_shots_select="random_sampling_from_train",
)
]
TASKS_TABLE.extend(gsm8k_tasks)
quasi_exact_match_math = SampleLevelMetric(
metric_name="qem",
sample_level_fn=ExactMatches(
strip_strings=True,
normalize_pred=lambda text: parse_math_answer(text, "math"),
normalize_gold=lambda text: parse_math_answer(text, "math")
).compute,
category=MetricCategory.GENERATIVE,
use_case=MetricUseCase.MATH,
corpus_level_fn=np.mean,
higher_is_better=True,
)
GPQA_TASKS = [
LightevalTaskConfig(
name="gpqa",
suite=["lighteval"],
prompt_function=gpqa,
hf_repo="Idavidrein/gpqa",
hf_subset="gpqa_main",
hf_avail_splits=["train"],
evaluation_splits=["train"],
few_shots_split=None,
few_shots_select="random_sampling",
generation_size=1,
metric=[Metrics.loglikelihood_acc_single_token],
stop_sequence=["\n"],
trust_dataset=True,
version=0,
)
]
TASKS_TABLE.extend(GPQA_TASKS)
MATH_TASKS = [
LightevalTaskConfig(
name="math",
prompt_function=prompt_math,
suite=["custom"],
hf_repo="HuggingFaceTB/math_tasks",
hf_subset="math",
hf_revision="3d34f1076f279000b9315583dcdacfd288898283",
hf_avail_splits=["train", "test", "demo"],
evaluation_splits=["test"],
metric=[quasi_exact_match_math],
generation_size=1024,
stop_sequence=["\n\n"],
few_shots_split="demo",
few_shots_select="sequential",
trust_dataset=True,
)
]
TASKS_TABLE.extend(MATH_TASKS)
BBH_TASKS = [
LightevalTaskConfig(
name=f"bbh:{subset}",
prompt_function=bbh_prompt,
suite=["custom"],
hf_repo="lighteval/big_bench_hard",
hf_subset=subset,
hf_revision="80610173426f05e6f1448f047e2db4840a7dd899",
metric=[Metrics.exact_match],
hf_avail_splits=["train"],
# this is the only split available, obviously not used in training
evaluation_splits=["train"],
few_shots_split="train",
trust_dataset=True,
stop_sequence=["Question:", "Question"],
)
for subset in [
"boolean_expressions",
"causal_judgement",
"date_understanding",
"disambiguation_qa",
"dyck_languages",
"formal_fallacies",
"geometric_shapes",
"hyperbaton",
"logical_deduction_five_objects",
"logical_deduction_seven_objects",
"logical_deduction_three_objects",
"movie_recommendation",
"multistep_arithmetic_two",
"navigate",
"object_counting",
"penguins_in_a_table",
"reasoning_about_colored_objects",
"ruin_names",
"salient_translation_error_detection",
"snarks",
"sports_understanding",
"temporal_sequences",
"tracking_shuffled_objects_five_objects",
"tracking_shuffled_objects_seven_objects",
"tracking_shuffled_objects_three_objects",
"web_of_lies",
"word_sorting",
]
]
TASKS_TABLE.extend(BBH_TASKS)
# remove pmi_norm from all tasks to save on double inference
for task in TASKS_TABLE:
task.metric = [metric for metric in task.metric if metric.category != MetricCategory.MULTICHOICE_PMI]
if __name__ == "__main__":
print(t.name for t in TASKS_TABLE)
print(len(TASKS_TABLE)) |