Create lighteval_tasks.py
Browse files- lighteval_tasks.py +503 -0
lighteval_tasks.py
ADDED
@@ -0,0 +1,503 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from functools import partial
|
3 |
+
|
4 |
+
import random
|
5 |
+
from lighteval.tasks.lighteval_task import LightevalTaskConfig
|
6 |
+
from lighteval.tasks.requests import Doc
|
7 |
+
from lighteval.metrics.metrics import Metrics, SampleLevelMetric, MetricCategory, MetricUseCase, ExactMatches
|
8 |
+
from lighteval.metrics.dynamic_metrics import (
|
9 |
+
loglikelihood_acc_metric,
|
10 |
+
multilingual_quasi_exact_match_metric,
|
11 |
+
multilingual_quasi_f1_score_metric,
|
12 |
+
)
|
13 |
+
from lighteval.metrics.normalizations import LogProbCharNorm, LogProbPMINorm, LogProbTokenNorm
|
14 |
+
from lighteval.tasks.default_prompts import LETTER_INDICES
|
15 |
+
import lighteval.tasks.default_prompts as prompt
|
16 |
+
from lighteval.tasks.lighteval_task import LightevalTaskConfig
|
17 |
+
from lighteval.tasks.multilingual.adapters import (
|
18 |
+
agieval_adapter,
|
19 |
+
alghafa_adapter,
|
20 |
+
ceval_adapter,
|
21 |
+
get_m3exam_adapter,
|
22 |
+
get_mkqa_adapter,
|
23 |
+
sciqa_adapter,
|
24 |
+
thai_exams_adapter,
|
25 |
+
winogrand_adapter,
|
26 |
+
xcodah_adapter,
|
27 |
+
)
|
28 |
+
from lighteval.tasks.multilingual.utils.task_utils import get_metrics_for_formulation, normalize_subset
|
29 |
+
from lighteval.tasks.templates.boolq import get_boolq_prompt_function
|
30 |
+
from lighteval.tasks.templates.continuation import get_continuation_prompt_function
|
31 |
+
from lighteval.tasks.templates.copa import get_copa_prompt_function
|
32 |
+
from lighteval.tasks.templates.hellaswag import get_hellaswag_prompt_function
|
33 |
+
from lighteval.tasks.templates.multichoice import get_mcq_prompt_function
|
34 |
+
from lighteval.tasks.templates.nli import get_nli_prompt_function
|
35 |
+
from lighteval.tasks.templates.qa import get_qa_prompt_function
|
36 |
+
from lighteval.tasks.templates.utils.formulation import (
|
37 |
+
CFFormulation,
|
38 |
+
HybridFormulation,
|
39 |
+
MCFFormulation,
|
40 |
+
)
|
41 |
+
from lighteval.utils.language import Language
|
42 |
+
|
43 |
+
from lighteval.tasks.multilingual.tasks import TASKS_TABLE as ML_TASKS_TABLE
|
44 |
+
from .math_utils import parse_math_answer
|
45 |
+
|
46 |
+
TASKS_TABLE = []
|
47 |
+
|
48 |
+
TASKS_TABLE.extend(ML_TASKS_TABLE)
|
49 |
+
|
50 |
+
def bbh_prompt(line, task_name: str = None):
|
51 |
+
return Doc(
|
52 |
+
task_name=task_name,
|
53 |
+
query="Question: " + line["input"] + "\nAnswer: ",
|
54 |
+
choices=[line["target"]],
|
55 |
+
gold_index=0,
|
56 |
+
)
|
57 |
+
|
58 |
+
def prompt_math(line, task_name: str = None):
|
59 |
+
return Doc(
|
60 |
+
task_name=task_name,
|
61 |
+
query=f"{line['problem']}\nPlease reason step by step, and put your final answer within \\boxed{{}}.\n\n",
|
62 |
+
gold_index=0,
|
63 |
+
choices=[f"{line['solution']}\n\n"],
|
64 |
+
)
|
65 |
+
|
66 |
+
def gpqa(line, task_name: str = None):
|
67 |
+
# Prompt template from simple-evals: https://github.com/openai/simple-evals/blob/83ed7640a7d9cd26849bcb3340125002ef14abbe/common.py#L14
|
68 |
+
GPQA_QUERY_TEMPLATE = """
|
69 |
+
Answer the following multiple choice question. The last line of your response should be of the following format: 'Answer: $LETTER' (without quotes) where LETTER is one of ABCD. Think step by step before answering.
|
70 |
+
|
71 |
+
{Question}
|
72 |
+
|
73 |
+
A) {A}
|
74 |
+
B) {B}
|
75 |
+
C) {C}
|
76 |
+
D) {D}
|
77 |
+
""".strip()
|
78 |
+
gold_index = random.randint(0, 3)
|
79 |
+
choices = [line["Incorrect Answer 1"], line["Incorrect Answer 2"], line["Incorrect Answer 3"]]
|
80 |
+
choices.insert(gold_index, line["Correct Answer"])
|
81 |
+
|
82 |
+
query = GPQA_QUERY_TEMPLATE.format(
|
83 |
+
A=choices[0], B=choices[1], C=choices[2], D=choices[3], Question=line["Question"]
|
84 |
+
)
|
85 |
+
|
86 |
+
return Doc(
|
87 |
+
task_name=task_name,
|
88 |
+
query=query,
|
89 |
+
choices=LETTER_INDICES[: len(choices)],
|
90 |
+
gold_index=gold_index,
|
91 |
+
instruction=query,
|
92 |
+
)
|
93 |
+
|
94 |
+
arc_tasks = [
|
95 |
+
LightevalTaskConfig(
|
96 |
+
name=f"arc_{formulation.name.lower()}:{subset.lower()}",
|
97 |
+
prompt_function=get_mcq_prompt_function(
|
98 |
+
Language.ENGLISH,
|
99 |
+
lambda line: {
|
100 |
+
"question": line["question"],
|
101 |
+
"choices": line["choices"]["text"],
|
102 |
+
"gold_idx": int(line["answerKey"]) - 1
|
103 |
+
if line["answerKey"].isdigit()
|
104 |
+
else LETTER_INDICES.index(line["answerKey"]),
|
105 |
+
},
|
106 |
+
formulation=formulation,
|
107 |
+
),
|
108 |
+
suite=("custom",),
|
109 |
+
hf_repo="allenai/ai2_arc",
|
110 |
+
hf_subset=f"ARC-{subset}",
|
111 |
+
hf_revision="210d026faf9955653af8916fad021475a3f00453",
|
112 |
+
trust_dataset=True,
|
113 |
+
evaluation_splits=("test",),
|
114 |
+
few_shots_split="train",
|
115 |
+
metric=get_metrics_for_formulation(
|
116 |
+
formulation,
|
117 |
+
[
|
118 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
119 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
120 |
+
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
|
121 |
+
],
|
122 |
+
),
|
123 |
+
)
|
124 |
+
for subset in ["Easy", "Challenge"]
|
125 |
+
for formulation in [
|
126 |
+
MCFFormulation(),
|
127 |
+
CFFormulation(),
|
128 |
+
HybridFormulation(),
|
129 |
+
]
|
130 |
+
]
|
131 |
+
|
132 |
+
TASKS_TABLE.extend(arc_tasks)
|
133 |
+
|
134 |
+
hellaswag_tasks = [
|
135 |
+
LightevalTaskConfig(
|
136 |
+
name=f"hellaswag_{formulation.name.lower()}",
|
137 |
+
suite=["custom"],
|
138 |
+
prompt_function=get_hellaswag_prompt_function(
|
139 |
+
language=Language.ENGLISH,
|
140 |
+
adapter=lambda line: {
|
141 |
+
"activity_label": line["activity_label"],
|
142 |
+
"ctx_a": line["ctx_a"],
|
143 |
+
"ctx_b": line["ctx_b"],
|
144 |
+
"continuations": line["endings"],
|
145 |
+
"gold_idx": int(line["label"]),
|
146 |
+
},
|
147 |
+
formulation=formulation,
|
148 |
+
),
|
149 |
+
hf_repo="Rowan/hellaswag",
|
150 |
+
hf_subset="default",
|
151 |
+
hf_revision="6002345709e0801764318f06bf06ce1e7d1a1fe3",
|
152 |
+
evaluation_splits=["validation"],
|
153 |
+
hf_avail_splits=["validation"],
|
154 |
+
metric=get_metrics_for_formulation(
|
155 |
+
formulation,
|
156 |
+
[
|
157 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
158 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
159 |
+
],
|
160 |
+
),
|
161 |
+
trust_dataset=True,
|
162 |
+
)
|
163 |
+
for formulation in [MCFFormulation(), CFFormulation(), HybridFormulation()]
|
164 |
+
]
|
165 |
+
|
166 |
+
TASKS_TABLE.extend(hellaswag_tasks)
|
167 |
+
|
168 |
+
commonsense_qa_tasks = [
|
169 |
+
LightevalTaskConfig(
|
170 |
+
name=f"commonsenseqa_{formulation.name.lower()}",
|
171 |
+
prompt_function=get_mcq_prompt_function(
|
172 |
+
Language.ENGLISH,
|
173 |
+
lambda line: {
|
174 |
+
"question": line["question"],
|
175 |
+
"choices": line["choices"]["text"],
|
176 |
+
"gold_idx": line["choices"]["label"].index(line["answerKey"].strip()),
|
177 |
+
},
|
178 |
+
formulation=formulation,
|
179 |
+
),
|
180 |
+
suite=("custom",),
|
181 |
+
hf_repo="tau/commonsense_qa",
|
182 |
+
hf_subset="default",
|
183 |
+
hf_revision="94630fe30dad47192a8546eb75f094926d47e155",
|
184 |
+
metric=get_metrics_for_formulation(
|
185 |
+
formulation,
|
186 |
+
[
|
187 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
188 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
189 |
+
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
|
190 |
+
],
|
191 |
+
),
|
192 |
+
)
|
193 |
+
for formulation in [
|
194 |
+
MCFFormulation(),
|
195 |
+
CFFormulation(),
|
196 |
+
HybridFormulation(),
|
197 |
+
]
|
198 |
+
]
|
199 |
+
|
200 |
+
TASKS_TABLE.extend(commonsense_qa_tasks)
|
201 |
+
|
202 |
+
openbook_qa_tasks = [
|
203 |
+
LightevalTaskConfig(
|
204 |
+
name=f"openbookqa_{formulation.name.lower()}",
|
205 |
+
prompt_function=get_mcq_prompt_function(
|
206 |
+
Language.ENGLISH,
|
207 |
+
lambda line: {
|
208 |
+
"question": line["question_stem"],
|
209 |
+
"choices": line["choices"]["text"],
|
210 |
+
"gold_idx": LETTER_INDICES.index(line["answerKey"]),
|
211 |
+
},
|
212 |
+
formulation=formulation,
|
213 |
+
),
|
214 |
+
suite=["custom"],
|
215 |
+
hf_repo="allenai/openbookqa",
|
216 |
+
hf_subset="main",
|
217 |
+
hf_revision="388097ea7776314e93a529163e0fea805b8a6454",
|
218 |
+
metric=get_metrics_for_formulation(
|
219 |
+
formulation,
|
220 |
+
[
|
221 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
222 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
223 |
+
],
|
224 |
+
),
|
225 |
+
)
|
226 |
+
for formulation in [
|
227 |
+
MCFFormulation(),
|
228 |
+
CFFormulation(),
|
229 |
+
HybridFormulation(),
|
230 |
+
]
|
231 |
+
]
|
232 |
+
|
233 |
+
TASKS_TABLE.extend(openbook_qa_tasks)
|
234 |
+
|
235 |
+
winogrande_tasks = [
|
236 |
+
LightevalTaskConfig(
|
237 |
+
name=f"winogrande_{formulation.name.lower()}",
|
238 |
+
suite=("custom",),
|
239 |
+
prompt_function=get_continuation_prompt_function(
|
240 |
+
Language.ENGLISH, partial(winogrand_adapter, Language.ENGLISH), formulation=formulation
|
241 |
+
),
|
242 |
+
hf_repo="allenai/winogrande",
|
243 |
+
hf_subset="winogrande_xl",
|
244 |
+
trust_dataset=True,
|
245 |
+
hf_revision="85ac5b5a3b7a930e22d590176e39460400d19e41",
|
246 |
+
metric=[
|
247 |
+
loglikelihood_acc_metric(normalization=None),
|
248 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
249 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
250 |
+
],
|
251 |
+
)
|
252 |
+
for formulation in [
|
253 |
+
MCFFormulation(),
|
254 |
+
CFFormulation(),
|
255 |
+
HybridFormulation(),
|
256 |
+
]
|
257 |
+
]
|
258 |
+
|
259 |
+
TASKS_TABLE.extend(winogrande_tasks)
|
260 |
+
|
261 |
+
piqa_tasks = [
|
262 |
+
LightevalTaskConfig(
|
263 |
+
name=f"piqa_{formulation.name.lower()}",
|
264 |
+
prompt_function=get_mcq_prompt_function(
|
265 |
+
Language.ENGLISH,
|
266 |
+
lambda line: {
|
267 |
+
"question": line["goal"],
|
268 |
+
"choices": [line['sol1'], line['sol2']],
|
269 |
+
"gold_idx": int(line["label"]),
|
270 |
+
},
|
271 |
+
formulation=formulation
|
272 |
+
),
|
273 |
+
suite=["custom"],
|
274 |
+
hf_repo="ybisk/piqa",
|
275 |
+
hf_revision="2e8ac2dffd59bac8c3c6714948f4c551a0848bb0",
|
276 |
+
hf_subset="plain_text",
|
277 |
+
trust_dataset=True,
|
278 |
+
metric=get_metrics_for_formulation(
|
279 |
+
formulation,
|
280 |
+
[
|
281 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
282 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
283 |
+
],
|
284 |
+
),
|
285 |
+
)
|
286 |
+
for formulation in [
|
287 |
+
MCFFormulation(),
|
288 |
+
CFFormulation(),
|
289 |
+
HybridFormulation(),
|
290 |
+
]
|
291 |
+
]
|
292 |
+
|
293 |
+
TASKS_TABLE.extend(piqa_tasks)
|
294 |
+
|
295 |
+
|
296 |
+
MMLU_SUBSETS = ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions']
|
297 |
+
|
298 |
+
mmlu_tasks = [
|
299 |
+
LightevalTaskConfig(
|
300 |
+
name=f"mmlu_{formulation.name.lower()}:{subset}",
|
301 |
+
prompt_function=get_mcq_prompt_function(
|
302 |
+
Language.ENGLISH,
|
303 |
+
lambda line: {
|
304 |
+
"question": line["question"],
|
305 |
+
"choices": line["choices"],
|
306 |
+
"gold_idx": int(line["answer"]),
|
307 |
+
},
|
308 |
+
formulation=formulation,
|
309 |
+
),
|
310 |
+
suite=("custom",),
|
311 |
+
hf_repo="cais/mmlu",
|
312 |
+
hf_subset=subset,
|
313 |
+
hf_revision="c30699e8356da336a370243923dbaf21066bb9fe",
|
314 |
+
trust_dataset=True,
|
315 |
+
evaluation_splits=("test",),
|
316 |
+
few_shots_split="dev",
|
317 |
+
metric=get_metrics_for_formulation(
|
318 |
+
formulation,
|
319 |
+
[
|
320 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
321 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
322 |
+
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
|
323 |
+
],
|
324 |
+
),
|
325 |
+
)
|
326 |
+
for subset in MMLU_SUBSETS
|
327 |
+
for formulation in [
|
328 |
+
MCFFormulation(),
|
329 |
+
CFFormulation(),
|
330 |
+
HybridFormulation(),
|
331 |
+
]
|
332 |
+
]
|
333 |
+
|
334 |
+
TASKS_TABLE.extend(mmlu_tasks)
|
335 |
+
|
336 |
+
mmlu_pro_tasks = [
|
337 |
+
LightevalTaskConfig(
|
338 |
+
name=f"mmlu_pro_{formulation.name.lower()}",
|
339 |
+
prompt_function=get_mcq_prompt_function(
|
340 |
+
Language.ENGLISH,
|
341 |
+
lambda line: {
|
342 |
+
"question": line["question"],
|
343 |
+
"choices": line["options"],
|
344 |
+
"gold_idx": line["answer_index"],
|
345 |
+
},
|
346 |
+
formulation=formulation,
|
347 |
+
),
|
348 |
+
suite=("custom",),
|
349 |
+
hf_repo="TIGER-Lab/MMLU-Pro",
|
350 |
+
hf_subset="default",
|
351 |
+
hf_revision="3373e0b32277875b8db2aa555a333b78a08477ea",
|
352 |
+
trust_dataset=True,
|
353 |
+
evaluation_splits=("test",),
|
354 |
+
few_shots_split="validation",
|
355 |
+
metric=get_metrics_for_formulation(
|
356 |
+
formulation,
|
357 |
+
[
|
358 |
+
loglikelihood_acc_metric(normalization=LogProbTokenNorm()),
|
359 |
+
loglikelihood_acc_metric(normalization=LogProbCharNorm()),
|
360 |
+
loglikelihood_acc_metric(normalization=LogProbPMINorm()),
|
361 |
+
],
|
362 |
+
),
|
363 |
+
)
|
364 |
+
for formulation in [
|
365 |
+
MCFFormulation(),
|
366 |
+
CFFormulation(),
|
367 |
+
HybridFormulation(),
|
368 |
+
]
|
369 |
+
]
|
370 |
+
|
371 |
+
TASKS_TABLE.extend(mmlu_pro_tasks)
|
372 |
+
|
373 |
+
gsm8k_tasks = [
|
374 |
+
LightevalTaskConfig(
|
375 |
+
name="gsm8k",
|
376 |
+
prompt_function=prompt.gsm8k,
|
377 |
+
suite=("custom",),
|
378 |
+
hf_repo="openai/gsm8k",
|
379 |
+
hf_subset="main",
|
380 |
+
hf_revision="e53f048856ff4f594e959d75785d2c2d37b678ee",
|
381 |
+
hf_avail_splits=["train", "test"],
|
382 |
+
evaluation_splits=["test"],
|
383 |
+
metric=[Metrics.quasi_exact_match_gsm8k],
|
384 |
+
generation_size=256,
|
385 |
+
stop_sequence=["Question:", "Question"],
|
386 |
+
few_shots_select="random_sampling_from_train",
|
387 |
+
)
|
388 |
+
]
|
389 |
+
|
390 |
+
TASKS_TABLE.extend(gsm8k_tasks)
|
391 |
+
|
392 |
+
quasi_exact_match_math = SampleLevelMetric(
|
393 |
+
metric_name="qem",
|
394 |
+
sample_level_fn=ExactMatches(
|
395 |
+
strip_strings=True,
|
396 |
+
normalize_pred=lambda text: parse_math_answer(text, "math"),
|
397 |
+
normalize_gold=lambda text: parse_math_answer(text, "math")
|
398 |
+
).compute,
|
399 |
+
category=MetricCategory.GENERATIVE,
|
400 |
+
use_case=MetricUseCase.MATH,
|
401 |
+
corpus_level_fn=np.mean,
|
402 |
+
higher_is_better=True,
|
403 |
+
)
|
404 |
+
|
405 |
+
GPQA_TASKS = [
|
406 |
+
LightevalTaskConfig(
|
407 |
+
name="gpqa",
|
408 |
+
suite=["lighteval"],
|
409 |
+
prompt_function=gpqa,
|
410 |
+
hf_repo="Idavidrein/gpqa",
|
411 |
+
hf_subset="gpqa_main",
|
412 |
+
hf_avail_splits=["train"],
|
413 |
+
evaluation_splits=["train"],
|
414 |
+
few_shots_split=None,
|
415 |
+
few_shots_select="random_sampling",
|
416 |
+
generation_size=1,
|
417 |
+
metric=[Metrics.loglikelihood_acc_single_token],
|
418 |
+
stop_sequence=["\n"],
|
419 |
+
trust_dataset=True,
|
420 |
+
version=0,
|
421 |
+
)
|
422 |
+
]
|
423 |
+
|
424 |
+
TASKS_TABLE.extend(GPQA_TASKS)
|
425 |
+
|
426 |
+
MATH_TASKS = [
|
427 |
+
LightevalTaskConfig(
|
428 |
+
name="math",
|
429 |
+
prompt_function=prompt_math,
|
430 |
+
suite=["custom"],
|
431 |
+
hf_repo="HuggingFaceTB/math_tasks",
|
432 |
+
hf_subset="math",
|
433 |
+
hf_revision="3d34f1076f279000b9315583dcdacfd288898283",
|
434 |
+
hf_avail_splits=["train", "test", "demo"],
|
435 |
+
evaluation_splits=["test"],
|
436 |
+
metric=[quasi_exact_match_math],
|
437 |
+
generation_size=1024,
|
438 |
+
stop_sequence=["\n\n"],
|
439 |
+
few_shots_split="demo",
|
440 |
+
few_shots_select="sequential",
|
441 |
+
trust_dataset=True,
|
442 |
+
)
|
443 |
+
]
|
444 |
+
|
445 |
+
TASKS_TABLE.extend(MATH_TASKS)
|
446 |
+
|
447 |
+
BBH_TASKS = [
|
448 |
+
LightevalTaskConfig(
|
449 |
+
name=f"bbh:{subset}",
|
450 |
+
prompt_function=bbh_prompt,
|
451 |
+
suite=["custom"],
|
452 |
+
hf_repo="lighteval/big_bench_hard",
|
453 |
+
hf_subset=subset,
|
454 |
+
hf_revision="80610173426f05e6f1448f047e2db4840a7dd899",
|
455 |
+
metric=[Metrics.exact_match],
|
456 |
+
hf_avail_splits=["train"],
|
457 |
+
# this is the only split available, obviously not used in training
|
458 |
+
evaluation_splits=["train"],
|
459 |
+
few_shots_split="train",
|
460 |
+
trust_dataset=True,
|
461 |
+
stop_sequence=["Question:", "Question"],
|
462 |
+
)
|
463 |
+
for subset in [
|
464 |
+
"boolean_expressions",
|
465 |
+
"causal_judgement",
|
466 |
+
"date_understanding",
|
467 |
+
"disambiguation_qa",
|
468 |
+
"dyck_languages",
|
469 |
+
"formal_fallacies",
|
470 |
+
"geometric_shapes",
|
471 |
+
"hyperbaton",
|
472 |
+
"logical_deduction_five_objects",
|
473 |
+
"logical_deduction_seven_objects",
|
474 |
+
"logical_deduction_three_objects",
|
475 |
+
"movie_recommendation",
|
476 |
+
"multistep_arithmetic_two",
|
477 |
+
"navigate",
|
478 |
+
"object_counting",
|
479 |
+
"penguins_in_a_table",
|
480 |
+
"reasoning_about_colored_objects",
|
481 |
+
"ruin_names",
|
482 |
+
"salient_translation_error_detection",
|
483 |
+
"snarks",
|
484 |
+
"sports_understanding",
|
485 |
+
"temporal_sequences",
|
486 |
+
"tracking_shuffled_objects_five_objects",
|
487 |
+
"tracking_shuffled_objects_seven_objects",
|
488 |
+
"tracking_shuffled_objects_three_objects",
|
489 |
+
"web_of_lies",
|
490 |
+
"word_sorting",
|
491 |
+
]
|
492 |
+
]
|
493 |
+
|
494 |
+
TASKS_TABLE.extend(BBH_TASKS)
|
495 |
+
|
496 |
+
# remove pmi_norm from all tasks to save on double inference
|
497 |
+
for task in TASKS_TABLE:
|
498 |
+
task.metric = [metric for metric in task.metric if metric.category != MetricCategory.MULTICHOICE_PMI]
|
499 |
+
|
500 |
+
|
501 |
+
if __name__ == "__main__":
|
502 |
+
print(t.name for t in TASKS_TABLE)
|
503 |
+
print(len(TASKS_TABLE))
|