Datasets:

Modalities:
Text
Languages:
Swedish
Libraries:
Datasets
License:
kubhist2 / README.md
drvenabili's picture
Update README.md
84a3379
|
raw
history blame
11.1 kB
metadata
dataset_info:
  - config_name: '1640'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 254777
        num_examples: 3509
    download_size: 114173
    dataset_size: 254777
  - config_name: '1650'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 31314
        num_examples: 412
    download_size: 15122
    dataset_size: 31314
  - config_name: '1660'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 56559
        num_examples: 726
    download_size: 25941
    dataset_size: 56559
  - config_name: '1670'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 15093
        num_examples: 188
    download_size: 8153
    dataset_size: 15093
  - config_name: '1680'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 1290089
        num_examples: 17458
    download_size: 609438
    dataset_size: 1290089
  - config_name: '1690'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 2977705
        num_examples: 42333
    download_size: 1355778
    dataset_size: 2977705
  - config_name: '1700'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 3800917
        num_examples: 53331
    download_size: 1702603
    dataset_size: 3800917
  - config_name: '1710'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 1601983
        num_examples: 22763
    download_size: 733219
    dataset_size: 1601983
  - config_name: '1720'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 2268261
        num_examples: 32813
    download_size: 1012144
    dataset_size: 2268261
  - config_name: '1730'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 5498116
        num_examples: 79079
    download_size: 2515986
    dataset_size: 5498116
  - config_name: '1740'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 10147602
        num_examples: 149317
    download_size: 4572359
    dataset_size: 10147602
  - config_name: '1750'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 14183279
        num_examples: 212000
    download_size: 6235076
    dataset_size: 14183279
  - config_name: '1760'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 34039377
        num_examples: 545759
    download_size: 15159865
    dataset_size: 34039377
  - config_name: '1770'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 89191958
        num_examples: 1333609
    download_size: 39582304
    dataset_size: 89191958
  - config_name: '1780'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 136703541
        num_examples: 2015223
    download_size: 60960878
    dataset_size: 136703541
  - config_name: '1790'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 163823087
        num_examples: 2435714
    download_size: 72860792
    dataset_size: 163823087
  - config_name: '1800'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 220361417
        num_examples: 3368887
    download_size: 98935407
    dataset_size: 220361417
  - config_name: '1810'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 263830012
        num_examples: 4205776
    download_size: 122219730
    dataset_size: 263830012
  - config_name: '1820'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 395727486
        num_examples: 6265710
    download_size: 175240370
    dataset_size: 395727486
  - config_name: '1830'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 580725783
        num_examples: 9355635
    download_size: 254403662
    dataset_size: 580725783
  - config_name: '1840'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 898420001
        num_examples: 14051720
    download_size: 381018147
    dataset_size: 898420001
  - config_name: '1850'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 1354049159
        num_examples: 21187511
    download_size: 570228565
    dataset_size: 1354049159
  - config_name: '1860'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 2512543535
        num_examples: 39321823
    download_size: 1046916115
    dataset_size: 2512543535
  - config_name: '1870'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 3383836222
        num_examples: 53045312
    download_size: 1399880807
    dataset_size: 3383836222
  - config_name: '1880'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 4501878144
        num_examples: 72015436
    download_size: 1827179641
    dataset_size: 4501878144
  - config_name: '1890'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 3219902112
        num_examples: 52337279
    download_size: 1315107645
    dataset_size: 3219902112
  - config_name: '1900'
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 205822484
        num_examples: 3284826
    download_size: 84811326
    dataset_size: 205822484
  - config_name: all
    features:
      - name: text
        dtype: string
    splits:
      - name: train
        num_bytes: 7999426267
        num_examples: 124880138
    download_size: 7483375536
    dataset_size: 7999426267
license: cc-by-sa-4.0
task_categories:
  - text-generation
language:
  - sv
tags:
  - newspapers
  - historical
size_categories:
  - 1B<n<10B

kubhist2

Dataset Description

Dataset Summary

This is a version of the Kubhist 2 dataset originally created, curated and made available by Språkbanken Text (SBX) at the University of Gothenburg (Sweden) under the CC BY 4.0 license. This is a a corpus of OCRed newspapers from Sweden spanning the 1640s to the 1900s. The original data is available with many types of annotation in XML at https://spraakbanken.gu.se/en/resources/kubhist2. A good description of the original data is available in this blog entry by Dana Dannélls: https://spraakbanken.gu.se/blogg/index.php/2019/09/15/the-kubhist-corpus-of-swedish-newspapers/.

If you use this dataset for academic research, cite it using the provided citation information at the bottom of this page.

In a nutshell, this hugginface dataset version offers:

  • only the OCRed text
  • available in decadal subsets
  • one line per sentence, sentences shorter than 4 words were discarded

In total this dataset contains 2,819,065,590 tokens. A distribution of tokens per decade is available below.

License is CC BY 4.0 ShareAlike.

(env) simon@terminus:/mnt/user/cik/kubhist2 wc -w text/*/*.txt
      39348 text/1640/1640.txt
       4700 text/1650/1650.txt
       8524 text/1660/1660.txt
       2396 text/1670/1670.txt
     199670 text/1680/1680.txt
     487943 text/1690/1690.txt
     619884 text/1700/1700.txt
     265930 text/1710/1710.txt
     355759 text/1720/1720.txt
     856218 text/1730/1730.txt
    1589508 text/1740/1740.txt
    2211316 text/1750/1750.txt
    5496545 text/1760/1760.txt
   14434932 text/1770/1770.txt
   22366170 text/1780/1780.txt
   26768856 text/1790/1790.txt
   36225842 text/1800/1800.txt
   44510588 text/1810/1810.txt
   65571094 text/1820/1820.txt
   95359730 text/1830/1830.txt
  143992956 text/1840/1840.txt
  214538699 text/1850/1850.txt
  392672066 text/1860/1860.txt
  524802728 text/1870/1870.txt
  695859650 text/1880/1880.txt
  498244203 text/1890/1890.txt
   31580335 text/1900/1900.txt
 2819065590 total

Languages

Swedish (nysvenska)

Dataset Structure

One feature: text.

Load the whole corpus using

dataset = load_dataset("ChangeIsKey/kubhist2")

or a decadal subset using

dataset = load_dataset("ChangeIsKey/kubhist2", "decade")

The decade must be a string, valid values are within range(1640, 1910, 10).

You can combine several decades using concatenate_datasets like this:

from datasets import load_dataset, concatenate_datasets

ds_1800 = load_dataset("ChangeIsKey/kubhist2", "1800")
ds_1810 = load_dataset("ChangeIsKey/kubhist2", "1810")
ds_1820 = load_dataset("ChangeIsKey/kubhist2", "1820")

ds_1800_1820 = concatenate_datasets([
                        ds_1800["train"],
                        ds_1810["train"],
                        ds_1820["train"]
                        ])

Data Splits

The dataset has only one split, train.

Dataset Creation

Curation Rationale

The original data is in a highly-annotated XML format not ideally suited for basic NLP tasks such as unsupervised language modeling: information such as page numbers, fonts, etc. is less relevant and has thus been discarded. Keeping only the running text of the newspaper and removing sentences shorter than 4 words further allows a 150x data size reduction (2.4TB --> 16GB).

Source Data

The original data is available with many types of annotation in XML at https://spraakbanken.gu.se/en/resources/kubhist2.

Initial Data Collection and Normalization

See on Språkbanken Text's website.

Who are the source language producers?

Språkbanken Text: https://spraakbanken.gu.se/en/

Personal and Sensitive Information

This is historical newspaper data, with the latest data published in 1909. Everyone mentioned in this dataset was probably already a public figure, and has been dead for a while.

Considerations for Using the Data

Discussion of Biases

This is historical data. As such, outdated views might be present in the data.

Other Known Limitations

The data comes from an OCR process. The text is thus not perfect, especially so in the earlier decades.

Additional Information

Dataset Curators

This huggingface version of the data has been created by Simon Hengchen.

Licensing Information

Creative Commons Attribution Share Alike 4.0: https://creativecommons.org/licenses/by-sa/4.0/

Citation Information

You should always cite the original kubhist2 release, provided below as bibtex. If you want to additionally refer to this specific version, please also add a link to the huggingface page: https://huggingface.co/datasets/ChangeIsKey/kubhist2.

@misc{Kubhist2,
  title = {The Kubhist Corpus, v2},
  url = {https://spraakbanken.gu.se/korp/?mode=kubhist},
  author = {Spr{\aa}kbanken},
  year = {Downloaded in 2019}, 
  organization = {Department of Swedish, University of Gothenburg}
}

Acknowledgments

This dataset has been created in the context of the ChangeIsKey! project funded by Riksbankens Jubileumsfond under reference number M21-0021, Change is Key! program. The compute dedicated to the creation of the dataset has been provided by iguanodon.ai.

Many thanks got to Språkbanken Text for creating and curating this resource.