Datasets:

Modalities:
Text
Languages:
Swedish
Libraries:
Datasets
License:
File size: 11,072 Bytes
fa35c5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6122819
 
fa35c5c
6122819
9b29f18
 
 
 
 
 
 
 
 
 
fa35c5c
c77a814
 
dd0b47b
9b29f18
 
 
 
 
 
 
 
 
 
 
 
7f9625e
 
 
9b29f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93d5cb
 
 
 
 
 
 
 
 
 
 
9b29f18
 
 
 
 
 
 
 
 
 
c93d5cb
 
 
 
 
9b29f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84a3379
9b29f18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
---
dataset_info:
- config_name: '1640'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 254777
    num_examples: 3509
  download_size: 114173
  dataset_size: 254777
- config_name: '1650'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 31314
    num_examples: 412
  download_size: 15122
  dataset_size: 31314
- config_name: '1660'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 56559
    num_examples: 726
  download_size: 25941
  dataset_size: 56559
- config_name: '1670'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 15093
    num_examples: 188
  download_size: 8153
  dataset_size: 15093
- config_name: '1680'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 1290089
    num_examples: 17458
  download_size: 609438
  dataset_size: 1290089
- config_name: '1690'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 2977705
    num_examples: 42333
  download_size: 1355778
  dataset_size: 2977705
- config_name: '1700'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 3800917
    num_examples: 53331
  download_size: 1702603
  dataset_size: 3800917
- config_name: '1710'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 1601983
    num_examples: 22763
  download_size: 733219
  dataset_size: 1601983
- config_name: '1720'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 2268261
    num_examples: 32813
  download_size: 1012144
  dataset_size: 2268261
- config_name: '1730'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 5498116
    num_examples: 79079
  download_size: 2515986
  dataset_size: 5498116
- config_name: '1740'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 10147602
    num_examples: 149317
  download_size: 4572359
  dataset_size: 10147602
- config_name: '1750'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 14183279
    num_examples: 212000
  download_size: 6235076
  dataset_size: 14183279
- config_name: '1760'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 34039377
    num_examples: 545759
  download_size: 15159865
  dataset_size: 34039377
- config_name: '1770'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 89191958
    num_examples: 1333609
  download_size: 39582304
  dataset_size: 89191958
- config_name: '1780'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 136703541
    num_examples: 2015223
  download_size: 60960878
  dataset_size: 136703541
- config_name: '1790'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 163823087
    num_examples: 2435714
  download_size: 72860792
  dataset_size: 163823087
- config_name: '1800'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 220361417
    num_examples: 3368887
  download_size: 98935407
  dataset_size: 220361417
- config_name: '1810'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 263830012
    num_examples: 4205776
  download_size: 122219730
  dataset_size: 263830012
- config_name: '1820'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 395727486
    num_examples: 6265710
  download_size: 175240370
  dataset_size: 395727486
- config_name: '1830'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 580725783
    num_examples: 9355635
  download_size: 254403662
  dataset_size: 580725783
- config_name: '1840'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 898420001
    num_examples: 14051720
  download_size: 381018147
  dataset_size: 898420001
- config_name: '1850'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 1354049159
    num_examples: 21187511
  download_size: 570228565
  dataset_size: 1354049159
- config_name: '1860'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 2512543535
    num_examples: 39321823
  download_size: 1046916115
  dataset_size: 2512543535
- config_name: '1870'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 3383836222
    num_examples: 53045312
  download_size: 1399880807
  dataset_size: 3383836222
- config_name: '1880'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 4501878144
    num_examples: 72015436
  download_size: 1827179641
  dataset_size: 4501878144
- config_name: '1890'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 3219902112
    num_examples: 52337279
  download_size: 1315107645
  dataset_size: 3219902112
- config_name: '1900'
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 205822484
    num_examples: 3284826
  download_size: 84811326
  dataset_size: 205822484
- config_name: all
  features:
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 7999426267
    num_examples: 124880138
  download_size: 7483375536
  dataset_size: 7999426267
license: cc-by-sa-4.0
task_categories:
- text-generation
language:
- sv
tags:
- newspapers
- historical
size_categories:
- 1B<n<10B
---

# kubhist2

## Dataset Description

- **Homepage: https://changeiskey.org** 
- **Repository: https://github.com/ChangeIsKey/kubhist2** 
- **Point of Contact: Simon Hengchen / iguanodon.ai** 


### Dataset Summary

This is a version of the Kubhist 2 dataset originally created, curated and made available by Språkbanken Text (SBX) at the University of Gothenburg (Sweden) under the CC BY 4.0 license. 
This is a a corpus of OCRed newspapers from Sweden spanning the 1640s to the 1900s.
The original data is available with many types of annotation in XML at https://spraakbanken.gu.se/en/resources/kubhist2. 
A good description of the original data is available in this blog entry by Dana Dannélls: https://spraakbanken.gu.se/blogg/index.php/2019/09/15/the-kubhist-corpus-of-swedish-newspapers/.

If you use this dataset for academic research, cite it using the provided citation information at the bottom of this page.

In a nutshell, this hugginface dataset version offers:
- only the OCRed text
- available in decadal subsets
- one line per sentence, sentences shorter than 4 words were discarded

In total this dataset contains 2,819,065,590 tokens. A distribution of tokens per decade is available below.

License is CC BY 4.0 ShareAlike.

```bash
(env) simon@terminus:/mnt/user/cik/kubhist2 wc -w text/*/*.txt
      39348 text/1640/1640.txt
       4700 text/1650/1650.txt
       8524 text/1660/1660.txt
       2396 text/1670/1670.txt
     199670 text/1680/1680.txt
     487943 text/1690/1690.txt
     619884 text/1700/1700.txt
     265930 text/1710/1710.txt
     355759 text/1720/1720.txt
     856218 text/1730/1730.txt
    1589508 text/1740/1740.txt
    2211316 text/1750/1750.txt
    5496545 text/1760/1760.txt
   14434932 text/1770/1770.txt
   22366170 text/1780/1780.txt
   26768856 text/1790/1790.txt
   36225842 text/1800/1800.txt
   44510588 text/1810/1810.txt
   65571094 text/1820/1820.txt
   95359730 text/1830/1830.txt
  143992956 text/1840/1840.txt
  214538699 text/1850/1850.txt
  392672066 text/1860/1860.txt
  524802728 text/1870/1870.txt
  695859650 text/1880/1880.txt
  498244203 text/1890/1890.txt
   31580335 text/1900/1900.txt
 2819065590 total

```


### Languages

Swedish (nysvenska)

## Dataset Structure

One feature: `text`.


Load the whole corpus using 
```python
dataset = load_dataset("ChangeIsKey/kubhist2")
```
or a decadal subset using 
```python
dataset = load_dataset("ChangeIsKey/kubhist2", "decade")
```
The `decade` must be a string, valid values are within `range(1640, 1910, 10)`.

You can combine several decades using `concatenate_datasets` like this:

```python
from datasets import load_dataset, concatenate_datasets

ds_1800 = load_dataset("ChangeIsKey/kubhist2", "1800")
ds_1810 = load_dataset("ChangeIsKey/kubhist2", "1810")
ds_1820 = load_dataset("ChangeIsKey/kubhist2", "1820")

ds_1800_1820 = concatenate_datasets([
                        ds_1800["train"],
                        ds_1810["train"],
                        ds_1820["train"]
                        ])
```


### Data Splits

The dataset has only one split, `train`.

## Dataset Creation

### Curation Rationale

The original data is in a highly-annotated XML format not ideally suited for basic NLP tasks such as unsupervised language modeling: information such as page numbers, fonts, etc. is less relevant and has thus been discarded.
Keeping only the running text of the newspaper and removing sentences shorter than 4 words further allows a 150x data size reduction (2.4TB --> 16GB). 

### Source Data

The original data is available with many types of annotation in XML at https://spraakbanken.gu.se/en/resources/kubhist2. 

#### Initial Data Collection and Normalization

See on Språkbanken Text's website.

#### Who are the source language producers?

Språkbanken Text: https://spraakbanken.gu.se/en/

### Personal and Sensitive Information

This is historical newspaper data, with the latest data published in 1909. Everyone mentioned in this dataset was probably already a public figure, and has been dead for a while.

## Considerations for Using the Data

### Discussion of Biases

This is historical data. As such, outdated views might be present in the data.

### Other Known Limitations

The data comes from an OCR process. The text is thus not perfect, especially so in the earlier decades.

## Additional Information

### Dataset Curators

This huggingface version of the data has been created by Simon Hengchen.

### Licensing Information

Creative Commons Attribution Share Alike 4.0: https://creativecommons.org/licenses/by-sa/4.0/

### Citation Information

You should always cite the original kubhist2 release, provided below as bibtex. If you want to additionally refer to this specific version, please also add a link to the huggingface page: https://huggingface.co/datasets/ChangeIsKey/kubhist2. 

```bibtex
@misc{Kubhist2,
  title = {The Kubhist Corpus, v2},
  url = {https://spraakbanken.gu.se/korp/?mode=kubhist},
  author = {Spr{\aa}kbanken},
  year = {Downloaded in 2019}, 
  organization = {Department of Swedish, University of Gothenburg}
}

```

### Acknowledgments

This dataset has been created in the context of the [ChangeIsKey!](https://www.changeiskey.org/) project funded by Riksbankens Jubileumsfond under reference number M21-0021, Change is Key! program.
The compute dedicated to the creation of the dataset has been provided by [iguanodon.ai](https://iguanodon.ai).

Many thanks got to Språkbanken Text for creating and curating this resource.