Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
7,800
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.895, V2: 0.467, V3: -0.508, V4: 3.944, V5: 0.274, V6: -0.047, V7: 0.139, V8: -0.098, V9: -0.664, V10: 1.366, V11: -1.413, V12: 0.004, V13: 0.060, V14: -0.038, V15: -1.503, V16: 0.379, V17: -0.460, V18: -0.639, V19: -1.419, V20: -0.299, V21: 0.086, V22: 0.442, V23: 0.084, V24: -0.012, V25: 0.123, V26: 0.099, V27: -0.023, V28: -0.050, Amount: 9.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.895, V2: 0.467, V3: -0.508, V4: 3.944, V5: 0.274, V6: -0.047, V7: 0.139, V8: -0.098, V9: -0.664, V10: 1.366, V11: -1.413, V12: 0.004, V13: 0.060, V14: -0.038, V15: -1.503, V16: 0.379, V17: -0.460, V18: -0.639, V19: -1.419, V20: -0.299, V21: 0.086, V22: 0.442, V23: 0.084, V24: -0.012, V25: 0.123, V26: 0.099, V27: -0.023, V28: -0.050, Amount: 9.850.
7,801
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.316, V2: -0.634, V3: 0.494, V4: -0.706, V5: -1.057, V6: -0.728, V7: -0.570, V8: -0.178, V9: -0.741, V10: 0.568, V11: -0.438, V12: -0.411, V13: 0.784, V14: -0.332, V15: 0.888, V16: 1.406, V17: 0.013, V18: -1.358, V19: 0.637, V20: 0.230, V21: 0.007, V22: -0.192, V23: 0.002, V24: 0.039, V25: 0.287, V26: -0.397, V27: 0.010, V28: 0.032, Amount: 65.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.316, V2: -0.634, V3: 0.494, V4: -0.706, V5: -1.057, V6: -0.728, V7: -0.570, V8: -0.178, V9: -0.741, V10: 0.568, V11: -0.438, V12: -0.411, V13: 0.784, V14: -0.332, V15: 0.888, V16: 1.406, V17: 0.013, V18: -1.358, V19: 0.637, V20: 0.230, V21: 0.007, V22: -0.192, V23: 0.002, V24: 0.039, V25: 0.287, V26: -0.397, V27: 0.010, V28: 0.032, Amount: 65.000.
7,802
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.914, V2: -0.255, V3: 1.216, V4: 1.210, V5: -0.867, V6: 0.265, V7: -0.587, V8: 0.288, V9: 0.198, V10: 0.092, V11: 1.641, V12: 0.988, V13: -0.032, V14: 0.237, V15: 0.961, V16: 0.535, V17: -0.599, V18: 0.337, V19: -0.875, V20: 0.020, V21: 0.246, V22: 0.550, V23: -0.037, V24: 0.214, V25: 0.175, V26: -0.370, V27: 0.059, V28: 0.043, Amount: 90.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.914, V2: -0.255, V3: 1.216, V4: 1.210, V5: -0.867, V6: 0.265, V7: -0.587, V8: 0.288, V9: 0.198, V10: 0.092, V11: 1.641, V12: 0.988, V13: -0.032, V14: 0.237, V15: 0.961, V16: 0.535, V17: -0.599, V18: 0.337, V19: -0.875, V20: 0.020, V21: 0.246, V22: 0.550, V23: -0.037, V24: 0.214, V25: 0.175, V26: -0.370, V27: 0.059, V28: 0.043, Amount: 90.000.
7,803
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.230, V2: 0.809, V3: 1.215, V4: 0.287, V5: 0.031, V6: 0.143, V7: 0.568, V8: 0.658, V9: -0.648, V10: -0.927, V11: 0.653, V12: 0.726, V13: -0.911, V14: 0.579, V15: -1.404, V16: -0.208, V17: -0.033, V18: -0.241, V19: -0.633, V20: -0.170, V21: 0.119, V22: 0.143, V23: -0.063, V24: -0.011, V25: 0.285, V26: -0.482, V27: -0.046, V28: 0.012, Amount: 73.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.230, V2: 0.809, V3: 1.215, V4: 0.287, V5: 0.031, V6: 0.143, V7: 0.568, V8: 0.658, V9: -0.648, V10: -0.927, V11: 0.653, V12: 0.726, V13: -0.911, V14: 0.579, V15: -1.404, V16: -0.208, V17: -0.033, V18: -0.241, V19: -0.633, V20: -0.170, V21: 0.119, V22: 0.143, V23: -0.063, V24: -0.011, V25: 0.285, V26: -0.482, V27: -0.046, V28: 0.012, Amount: 73.790.
7,804
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.002, V2: -1.000, V3: -0.246, V4: -1.720, V5: -0.927, V6: 0.292, V7: -1.303, V8: 0.287, V9: 2.390, V10: -0.845, V11: 0.652, V12: 1.460, V13: 0.562, V14: -0.289, V15: 0.989, V16: 0.292, V17: -0.915, V18: 1.149, V19: 0.753, V20: -0.100, V21: 0.270, V22: 1.026, V23: 0.146, V24: 0.275, V25: -0.290, V26: -0.201, V27: 0.066, V28: -0.036, Amount: 8.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.002, V2: -1.000, V3: -0.246, V4: -1.720, V5: -0.927, V6: 0.292, V7: -1.303, V8: 0.287, V9: 2.390, V10: -0.845, V11: 0.652, V12: 1.460, V13: 0.562, V14: -0.289, V15: 0.989, V16: 0.292, V17: -0.915, V18: 1.149, V19: 0.753, V20: -0.100, V21: 0.270, V22: 1.026, V23: 0.146, V24: 0.275, V25: -0.290, V26: -0.201, V27: 0.066, V28: -0.036, Amount: 8.490.
7,805
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.414, V2: 1.430, V3: -1.169, V4: -0.711, V5: 1.189, V6: 0.141, V7: 0.357, V8: 0.504, V9: 1.127, V10: -0.949, V11: 0.878, V12: -2.289, V13: 1.437, V14: 0.876, V15: -1.534, V16: 0.869, V17: 0.702, V18: 0.874, V19: 0.150, V20: 0.006, V21: -0.498, V22: -1.145, V23: 0.031, V24: -0.649, V25: -0.288, V26: 0.135, V27: 0.181, V28: 0.043, Amount: 8.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.414, V2: 1.430, V3: -1.169, V4: -0.711, V5: 1.189, V6: 0.141, V7: 0.357, V8: 0.504, V9: 1.127, V10: -0.949, V11: 0.878, V12: -2.289, V13: 1.437, V14: 0.876, V15: -1.534, V16: 0.869, V17: 0.702, V18: 0.874, V19: 0.150, V20: 0.006, V21: -0.498, V22: -1.145, V23: 0.031, V24: -0.649, V25: -0.288, V26: 0.135, V27: 0.181, V28: 0.043, Amount: 8.940.
7,806
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.207, V2: 0.982, V3: 0.076, V4: -0.843, V5: 0.627, V6: -0.547, V7: 0.877, V8: -0.008, V9: -0.109, V10: 0.056, V11: 0.570, V12: 0.806, V13: 0.089, V14: 0.203, V15: -1.030, V16: 0.114, V17: -0.737, V18: -0.265, V19: 0.227, V20: 0.108, V21: -0.254, V22: -0.509, V23: 0.028, V24: -0.403, V25: -0.436, V26: 0.151, V27: 0.353, V28: 0.144, Amount: 1.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.207, V2: 0.982, V3: 0.076, V4: -0.843, V5: 0.627, V6: -0.547, V7: 0.877, V8: -0.008, V9: -0.109, V10: 0.056, V11: 0.570, V12: 0.806, V13: 0.089, V14: 0.203, V15: -1.030, V16: 0.114, V17: -0.737, V18: -0.265, V19: 0.227, V20: 0.108, V21: -0.254, V22: -0.509, V23: 0.028, V24: -0.403, V25: -0.436, V26: 0.151, V27: 0.353, V28: 0.144, Amount: 1.780.
7,807
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.571, V2: 1.705, V3: 0.379, V4: -0.786, V5: -0.934, V6: -0.635, V7: -0.578, V8: 0.972, V9: 0.837, V10: -1.094, V11: -0.715, V12: 0.616, V13: 0.863, V14: -1.368, V15: 0.581, V16: 0.945, V17: 0.562, V18: 0.688, V19: -0.740, V20: 0.096, V21: 0.022, V22: 0.164, V23: -0.009, V24: -0.108, V25: 0.024, V26: -0.043, V27: 0.150, V28: 0.100, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.571, V2: 1.705, V3: 0.379, V4: -0.786, V5: -0.934, V6: -0.635, V7: -0.578, V8: 0.972, V9: 0.837, V10: -1.094, V11: -0.715, V12: 0.616, V13: 0.863, V14: -1.368, V15: 0.581, V16: 0.945, V17: 0.562, V18: 0.688, V19: -0.740, V20: 0.096, V21: 0.022, V22: 0.164, V23: -0.009, V24: -0.108, V25: 0.024, V26: -0.043, V27: 0.150, V28: 0.100, Amount: 9.990.
7,808
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.114, V2: 0.445, V3: 0.667, V4: 0.439, V5: 0.509, V6: -0.369, V7: 0.065, V8: 0.618, V9: -1.074, V10: -0.305, V11: 0.903, V12: -0.102, V13: -1.562, V14: 1.343, V15: 0.835, V16: -0.263, V17: 0.314, V18: -0.165, V19: 1.301, V20: 0.077, V21: -0.139, V22: -0.883, V23: 0.071, V24: -0.341, V25: -0.459, V26: 0.273, V27: -0.055, V28: -0.063, Amount: 19.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.114, V2: 0.445, V3: 0.667, V4: 0.439, V5: 0.509, V6: -0.369, V7: 0.065, V8: 0.618, V9: -1.074, V10: -0.305, V11: 0.903, V12: -0.102, V13: -1.562, V14: 1.343, V15: 0.835, V16: -0.263, V17: 0.314, V18: -0.165, V19: 1.301, V20: 0.077, V21: -0.139, V22: -0.883, V23: 0.071, V24: -0.341, V25: -0.459, V26: 0.273, V27: -0.055, V28: -0.063, Amount: 19.950.
7,809
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.354, V2: 1.074, V3: 0.322, V4: 2.450, V5: 1.313, V6: 0.058, V7: 1.274, V8: 0.384, V9: -2.174, V10: 0.132, V11: -1.776, V12: -0.408, V13: 0.114, V14: 0.524, V15: -1.672, V16: 1.049, V17: -0.899, V18: -0.521, V19: -1.931, V20: 0.050, V21: 0.034, V22: -0.534, V23: 0.159, V24: 0.504, V25: 0.071, V26: -0.357, V27: -0.089, V28: 0.016, Amount: 121.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.354, V2: 1.074, V3: 0.322, V4: 2.450, V5: 1.313, V6: 0.058, V7: 1.274, V8: 0.384, V9: -2.174, V10: 0.132, V11: -1.776, V12: -0.408, V13: 0.114, V14: 0.524, V15: -1.672, V16: 1.049, V17: -0.899, V18: -0.521, V19: -1.931, V20: 0.050, V21: 0.034, V22: -0.534, V23: 0.159, V24: 0.504, V25: 0.071, V26: -0.357, V27: -0.089, V28: 0.016, Amount: 121.350.
7,810
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.970, V2: -0.283, V3: -1.488, V4: 0.203, V5: -0.097, V6: -1.340, V7: 0.374, V8: -0.359, V9: 0.804, V10: -0.116, V11: -0.853, V12: -0.004, V13: -0.994, V14: 0.637, V15: 0.250, V16: -0.505, V17: -0.089, V18: -0.672, V19: 0.194, V20: -0.202, V21: -0.115, V22: -0.309, V23: 0.161, V24: -0.024, V25: -0.036, V26: -0.078, V27: -0.063, V28: -0.056, Amount: 56.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.970, V2: -0.283, V3: -1.488, V4: 0.203, V5: -0.097, V6: -1.340, V7: 0.374, V8: -0.359, V9: 0.804, V10: -0.116, V11: -0.853, V12: -0.004, V13: -0.994, V14: 0.637, V15: 0.250, V16: -0.505, V17: -0.089, V18: -0.672, V19: 0.194, V20: -0.202, V21: -0.115, V22: -0.309, V23: 0.161, V24: -0.024, V25: -0.036, V26: -0.078, V27: -0.063, V28: -0.056, Amount: 56.000.
7,811
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.680, V2: -0.436, V3: 1.268, V4: 4.797, V5: -0.570, V6: 1.144, V7: 1.308, V8: -0.121, V9: -1.464, V10: 1.432, V11: -1.210, V12: -1.207, V13: -0.129, V14: -0.021, V15: 1.254, V16: 0.259, V17: -0.218, V18: 0.777, V19: 0.658, V20: 1.195, V21: 0.569, V22: 1.060, V23: 1.043, V24: -0.146, V25: -1.157, V26: 0.277, V27: -0.013, V28: 0.077, Amount: 417.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.680, V2: -0.436, V3: 1.268, V4: 4.797, V5: -0.570, V6: 1.144, V7: 1.308, V8: -0.121, V9: -1.464, V10: 1.432, V11: -1.210, V12: -1.207, V13: -0.129, V14: -0.021, V15: 1.254, V16: 0.259, V17: -0.218, V18: 0.777, V19: 0.658, V20: 1.195, V21: 0.569, V22: 1.060, V23: 1.043, V24: -0.146, V25: -1.157, V26: 0.277, V27: -0.013, V28: 0.077, Amount: 417.220.
7,812
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.213, V2: -0.068, V3: 1.665, V4: -0.205, V5: 1.061, V6: -1.560, V7: 0.350, V8: -0.114, V9: -0.570, V10: -0.698, V11: -0.325, V12: 0.679, V13: 1.210, V14: -0.045, V15: 0.278, V16: 0.394, V17: -0.728, V18: -0.526, V19: -0.686, V20: 0.258, V21: -0.044, V22: -0.498, V23: 0.218, V24: 0.401, V25: -0.284, V26: -0.102, V27: 0.028, V28: 0.153, Amount: 29.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.213, V2: -0.068, V3: 1.665, V4: -0.205, V5: 1.061, V6: -1.560, V7: 0.350, V8: -0.114, V9: -0.570, V10: -0.698, V11: -0.325, V12: 0.679, V13: 1.210, V14: -0.045, V15: 0.278, V16: 0.394, V17: -0.728, V18: -0.526, V19: -0.686, V20: 0.258, V21: -0.044, V22: -0.498, V23: 0.218, V24: 0.401, V25: -0.284, V26: -0.102, V27: 0.028, V28: 0.153, Amount: 29.890.
7,813
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.944, V2: -0.896, V3: 0.892, V4: -0.179, V5: -1.283, V6: -0.234, V7: -0.654, V8: 0.009, V9: 0.851, V10: -0.326, V11: -0.732, V12: 0.157, V13: 0.773, V14: -0.347, V15: 1.707, V16: 1.070, V17: -0.779, V18: 0.352, V19: -0.149, V20: 0.372, V21: 0.256, V22: 0.412, V23: -0.209, V24: -0.017, V25: 0.009, V26: 1.507, V27: -0.087, V28: 0.042, Amount: 179.400.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.944, V2: -0.896, V3: 0.892, V4: -0.179, V5: -1.283, V6: -0.234, V7: -0.654, V8: 0.009, V9: 0.851, V10: -0.326, V11: -0.732, V12: 0.157, V13: 0.773, V14: -0.347, V15: 1.707, V16: 1.070, V17: -0.779, V18: 0.352, V19: -0.149, V20: 0.372, V21: 0.256, V22: 0.412, V23: -0.209, V24: -0.017, V25: 0.009, V26: 1.507, V27: -0.087, V28: 0.042, Amount: 179.400.
7,814
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.741, V2: -0.965, V3: 0.072, V4: 0.459, V5: -1.330, V6: -0.236, V7: -0.980, V8: 0.246, V9: 1.361, V10: 0.179, V11: 0.596, V12: 0.115, V13: -1.675, V14: 0.263, V15: 0.288, V16: 0.935, V17: -0.771, V18: 0.770, V19: -0.124, V20: -0.103, V21: 0.139, V22: 0.227, V23: 0.253, V24: 0.055, V25: -0.711, V26: 0.343, V27: -0.036, V28: -0.033, Amount: 100.810.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.741, V2: -0.965, V3: 0.072, V4: 0.459, V5: -1.330, V6: -0.236, V7: -0.980, V8: 0.246, V9: 1.361, V10: 0.179, V11: 0.596, V12: 0.115, V13: -1.675, V14: 0.263, V15: 0.288, V16: 0.935, V17: -0.771, V18: 0.770, V19: -0.124, V20: -0.103, V21: 0.139, V22: 0.227, V23: 0.253, V24: 0.055, V25: -0.711, V26: 0.343, V27: -0.036, V28: -0.033, Amount: 100.810.
7,815
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.875, V2: -0.728, V3: -0.552, V4: 0.152, V5: -0.619, V6: -0.089, V7: -0.636, V8: 0.052, V9: 1.546, V10: -0.249, V11: -1.080, V12: 0.274, V13: -0.096, V14: -0.168, V15: 0.641, V16: 0.121, V17: -0.453, V18: 0.152, V19: -0.157, V20: -0.061, V21: 0.209, V22: 0.663, V23: 0.107, V24: 0.642, V25: -0.182, V26: 0.096, V27: -0.000, V28: -0.026, Amount: 74.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.875, V2: -0.728, V3: -0.552, V4: 0.152, V5: -0.619, V6: -0.089, V7: -0.636, V8: 0.052, V9: 1.546, V10: -0.249, V11: -1.080, V12: 0.274, V13: -0.096, V14: -0.168, V15: 0.641, V16: 0.121, V17: -0.453, V18: 0.152, V19: -0.157, V20: -0.061, V21: 0.209, V22: 0.663, V23: 0.107, V24: 0.642, V25: -0.182, V26: 0.096, V27: -0.000, V28: -0.026, Amount: 74.950.
7,816
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.047, V2: -0.879, V3: -1.923, V4: -1.850, V5: 1.586, V6: 3.488, V7: -1.273, V8: 0.958, V9: 1.402, V10: -0.354, V11: 0.095, V12: 0.451, V13: 0.058, V14: 0.121, V15: 1.588, V16: 0.159, V17: -0.601, V18: -0.054, V19: -0.053, V20: -0.096, V21: 0.172, V22: 0.578, V23: 0.225, V24: 0.775, V25: -0.298, V26: 0.726, V27: -0.017, V28: -0.059, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.047, V2: -0.879, V3: -1.923, V4: -1.850, V5: 1.586, V6: 3.488, V7: -1.273, V8: 0.958, V9: 1.402, V10: -0.354, V11: 0.095, V12: 0.451, V13: 0.058, V14: 0.121, V15: 1.588, V16: 0.159, V17: -0.601, V18: -0.054, V19: -0.053, V20: -0.096, V21: 0.172, V22: 0.578, V23: 0.225, V24: 0.775, V25: -0.298, V26: 0.726, V27: -0.017, V28: -0.059, Amount: 1.000.
7,817
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.240, V2: 0.603, V3: -0.258, V4: 1.320, V5: -0.051, V6: -1.217, V7: 0.235, V8: -0.193, V9: 0.056, V10: -0.539, V11: -0.118, V12: -0.539, V13: -0.937, V14: -0.872, V15: 1.159, V16: 0.548, V17: 0.723, V18: 0.579, V19: -0.575, V20: -0.164, V21: -0.063, V22: -0.154, V23: -0.109, V24: 0.247, V25: 0.661, V26: -0.324, V27: 0.026, V28: 0.049, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.240, V2: 0.603, V3: -0.258, V4: 1.320, V5: -0.051, V6: -1.217, V7: 0.235, V8: -0.193, V9: 0.056, V10: -0.539, V11: -0.118, V12: -0.539, V13: -0.937, V14: -0.872, V15: 1.159, V16: 0.548, V17: 0.723, V18: 0.579, V19: -0.575, V20: -0.164, V21: -0.063, V22: -0.154, V23: -0.109, V24: 0.247, V25: 0.661, V26: -0.324, V27: 0.026, V28: 0.049, Amount: 1.000.
7,818
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.007, V2: 0.705, V3: 1.072, V4: -0.522, V5: -0.185, V6: 0.107, V7: -0.152, V8: 0.736, V9: -0.026, V10: -0.701, V11: 0.524, V12: 0.480, V13: -0.432, V14: 0.508, V15: 0.284, V16: 0.405, V17: -0.604, V18: 1.137, V19: 0.310, V20: 0.097, V21: 0.343, V22: 0.874, V23: -0.164, V24: 0.766, V25: 0.022, V26: -0.189, V27: 0.259, V28: 0.110, Amount: 32.550.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.007, V2: 0.705, V3: 1.072, V4: -0.522, V5: -0.185, V6: 0.107, V7: -0.152, V8: 0.736, V9: -0.026, V10: -0.701, V11: 0.524, V12: 0.480, V13: -0.432, V14: 0.508, V15: 0.284, V16: 0.405, V17: -0.604, V18: 1.137, V19: 0.310, V20: 0.097, V21: 0.343, V22: 0.874, V23: -0.164, V24: 0.766, V25: 0.022, V26: -0.189, V27: 0.259, V28: 0.110, Amount: 32.550.
7,819
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.927, V2: 1.445, V3: 1.723, V4: 3.171, V5: 0.036, V6: 0.046, V7: -0.107, V8: 0.490, V9: -0.469, V10: 0.350, V11: 2.116, V12: -1.242, V13: 2.774, V14: 1.800, V15: -1.170, V16: -0.192, V17: 0.918, V18: 0.380, V19: 1.040, V20: 0.267, V21: -0.159, V22: -0.217, V23: 0.033, V24: 0.492, V25: -0.443, V26: -0.027, V27: 0.266, V28: 0.091, Amount: 6.030.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.927, V2: 1.445, V3: 1.723, V4: 3.171, V5: 0.036, V6: 0.046, V7: -0.107, V8: 0.490, V9: -0.469, V10: 0.350, V11: 2.116, V12: -1.242, V13: 2.774, V14: 1.800, V15: -1.170, V16: -0.192, V17: 0.918, V18: 0.380, V19: 1.040, V20: 0.267, V21: -0.159, V22: -0.217, V23: 0.033, V24: 0.492, V25: -0.443, V26: -0.027, V27: 0.266, V28: 0.091, Amount: 6.030.
7,820
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.850, V2: -4.081, V3: -0.372, V4: -0.364, V5: -2.524, V6: -0.564, V7: 0.732, V8: -0.276, V9: 1.960, V10: -1.649, V11: -0.540, V12: 0.224, V13: -0.852, V14: 0.249, V15: 1.593, V16: -0.195, V17: 0.017, V18: 0.418, V19: 0.402, V20: 2.080, V21: 0.633, V22: -0.479, V23: -0.970, V24: 0.458, V25: -0.075, V26: -0.140, V27: -0.168, V28: 0.215, Amount: 1100.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.850, V2: -4.081, V3: -0.372, V4: -0.364, V5: -2.524, V6: -0.564, V7: 0.732, V8: -0.276, V9: 1.960, V10: -1.649, V11: -0.540, V12: 0.224, V13: -0.852, V14: 0.249, V15: 1.593, V16: -0.195, V17: 0.017, V18: 0.418, V19: 0.402, V20: 2.080, V21: 0.633, V22: -0.479, V23: -0.970, V24: 0.458, V25: -0.075, V26: -0.140, V27: -0.168, V28: 0.215, Amount: 1100.000.
7,821
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.095, V2: -0.071, V3: -2.114, V4: 0.105, V5: 0.735, V6: -0.077, V7: -0.080, V8: 0.090, V9: 0.618, V10: -0.146, V11: -0.058, V12: -0.595, V13: -1.974, V14: -0.282, V15: -0.195, V16: 0.882, V17: 0.007, V18: 0.749, V19: 0.705, V20: -0.250, V21: -0.398, V22: -1.176, V23: 0.238, V24: -0.503, V25: -0.236, V26: 0.219, V27: -0.082, V28: -0.055, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.095, V2: -0.071, V3: -2.114, V4: 0.105, V5: 0.735, V6: -0.077, V7: -0.080, V8: 0.090, V9: 0.618, V10: -0.146, V11: -0.058, V12: -0.595, V13: -1.974, V14: -0.282, V15: -0.195, V16: 0.882, V17: 0.007, V18: 0.749, V19: 0.705, V20: -0.250, V21: -0.398, V22: -1.176, V23: 0.238, V24: -0.503, V25: -0.236, V26: 0.219, V27: -0.082, V28: -0.055, Amount: 1.980.
7,822
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.331, V2: -0.607, V3: 0.483, V4: -0.885, V5: -0.769, V6: 0.064, V7: -0.852, V8: 0.090, V9: -0.984, V10: 0.738, V11: 1.455, V12: 0.424, V13: 0.954, V14: -0.218, V15: 0.397, V16: 1.205, V17: 0.029, V18: -0.990, V19: 0.382, V20: 0.126, V21: 0.422, V22: 1.205, V23: -0.178, V24: -0.226, V25: 0.536, V26: 0.003, V27: 0.033, V28: 0.003, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.331, V2: -0.607, V3: 0.483, V4: -0.885, V5: -0.769, V6: 0.064, V7: -0.852, V8: 0.090, V9: -0.984, V10: 0.738, V11: 1.455, V12: 0.424, V13: 0.954, V14: -0.218, V15: 0.397, V16: 1.205, V17: 0.029, V18: -0.990, V19: 0.382, V20: 0.126, V21: 0.422, V22: 1.205, V23: -0.178, V24: -0.226, V25: 0.536, V26: 0.003, V27: 0.033, V28: 0.003, Amount: 15.000.
7,823
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.350, V2: 1.799, V3: 0.152, V4: -1.102, V5: 0.854, V6: -0.558, V7: 1.575, V8: -0.908, V9: 3.142, V10: 2.609, V11: 1.891, V12: -2.415, V13: 0.941, V14: 0.411, V15: -1.502, V16: -0.322, V17: -0.528, V18: -0.044, V19: -0.065, V20: 1.097, V21: -0.873, V22: -0.760, V23: -0.069, V24: -0.446, V25: -0.292, V26: -0.032, V27: -0.161, V28: -0.869, Amount: 13.480.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.350, V2: 1.799, V3: 0.152, V4: -1.102, V5: 0.854, V6: -0.558, V7: 1.575, V8: -0.908, V9: 3.142, V10: 2.609, V11: 1.891, V12: -2.415, V13: 0.941, V14: 0.411, V15: -1.502, V16: -0.322, V17: -0.528, V18: -0.044, V19: -0.065, V20: 1.097, V21: -0.873, V22: -0.760, V23: -0.069, V24: -0.446, V25: -0.292, V26: -0.032, V27: -0.161, V28: -0.869, Amount: 13.480.
7,824
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.330, V2: -6.311, V3: 1.781, V4: -0.129, V5: 6.786, V6: -1.900, V7: -4.202, V8: 1.344, V9: 0.831, V10: -0.785, V11: 0.315, V12: 0.681, V13: -0.754, V14: 0.319, V15: 0.403, V16: -0.288, V17: -0.201, V18: -0.071, V19: -1.125, V20: 1.501, V21: 0.784, V22: 0.421, V23: 0.803, V24: -0.957, V25: 0.828, V26: 0.250, V27: -0.178, V28: 0.159, Amount: 39.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.330, V2: -6.311, V3: 1.781, V4: -0.129, V5: 6.786, V6: -1.900, V7: -4.202, V8: 1.344, V9: 0.831, V10: -0.785, V11: 0.315, V12: 0.681, V13: -0.754, V14: 0.319, V15: 0.403, V16: -0.288, V17: -0.201, V18: -0.071, V19: -1.125, V20: 1.501, V21: 0.784, V22: 0.421, V23: 0.803, V24: -0.957, V25: 0.828, V26: 0.250, V27: -0.178, V28: 0.159, Amount: 39.950.
7,825
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.604, V2: 0.939, V3: -0.663, V4: -0.082, V5: 0.789, V6: -1.450, V7: 0.705, V8: 0.079, V9: -0.507, V10: -1.296, V11: -0.719, V12: 0.233, V13: 0.831, V14: -0.591, V15: 0.575, V16: 0.112, V17: 0.536, V18: 0.739, V19: -0.051, V20: 0.017, V21: 0.425, V22: 1.096, V23: -0.182, V24: -0.145, V25: -0.409, V26: -0.159, V27: 0.112, V28: 0.121, Amount: 28.180.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.604, V2: 0.939, V3: -0.663, V4: -0.082, V5: 0.789, V6: -1.450, V7: 0.705, V8: 0.079, V9: -0.507, V10: -1.296, V11: -0.719, V12: 0.233, V13: 0.831, V14: -0.591, V15: 0.575, V16: 0.112, V17: 0.536, V18: 0.739, V19: -0.051, V20: 0.017, V21: 0.425, V22: 1.096, V23: -0.182, V24: -0.145, V25: -0.409, V26: -0.159, V27: 0.112, V28: 0.121, Amount: 28.180.
7,826
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.031, V2: -0.903, V3: -1.642, V4: -0.392, V5: -0.361, V6: -0.783, V7: -0.154, V8: -0.320, V9: -0.276, V10: 0.788, V11: -1.623, V12: -0.578, V13: -0.192, V14: 0.429, V15: 0.810, V16: -1.493, V17: -0.420, V18: 1.566, V19: -0.851, V20: -0.479, V21: -0.091, V22: 0.131, V23: -0.076, V24: -0.734, V25: 0.162, V26: -0.062, V27: -0.011, V28: -0.045, Amount: 99.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.031, V2: -0.903, V3: -1.642, V4: -0.392, V5: -0.361, V6: -0.783, V7: -0.154, V8: -0.320, V9: -0.276, V10: 0.788, V11: -1.623, V12: -0.578, V13: -0.192, V14: 0.429, V15: 0.810, V16: -1.493, V17: -0.420, V18: 1.566, V19: -0.851, V20: -0.479, V21: -0.091, V22: 0.131, V23: -0.076, V24: -0.734, V25: 0.162, V26: -0.062, V27: -0.011, V28: -0.045, Amount: 99.990.
7,827
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.691, V2: 1.223, V3: 0.371, V4: 0.808, V5: 0.772, V6: 1.374, V7: 0.233, V8: 0.747, V9: -0.718, V10: -0.193, V11: -0.500, V12: 0.797, V13: 0.819, V14: 0.289, V15: -0.471, V16: -0.427, V17: -0.122, V18: 0.339, V19: 1.651, V20: 0.171, V21: -0.037, V22: 0.110, V23: -0.293, V24: -1.670, V25: 0.164, V26: -0.134, V27: 0.297, V28: 0.116, Amount: 27.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.691, V2: 1.223, V3: 0.371, V4: 0.808, V5: 0.772, V6: 1.374, V7: 0.233, V8: 0.747, V9: -0.718, V10: -0.193, V11: -0.500, V12: 0.797, V13: 0.819, V14: 0.289, V15: -0.471, V16: -0.427, V17: -0.122, V18: 0.339, V19: 1.651, V20: 0.171, V21: -0.037, V22: 0.110, V23: -0.293, V24: -1.670, V25: 0.164, V26: -0.134, V27: 0.297, V28: 0.116, Amount: 27.000.
7,828
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.997, V2: -0.143, V3: -2.102, V4: 0.149, V5: 0.592, V6: -0.882, V7: 0.600, V8: -0.330, V9: -0.081, V10: 0.300, V11: 0.870, V12: 0.845, V13: -0.326, V14: 0.800, V15: -0.970, V16: -0.420, V17: -0.326, V18: -0.263, V19: 0.436, V20: -0.111, V21: 0.170, V22: 0.511, V23: -0.038, V24: 0.853, V25: 0.315, V26: 0.767, V27: -0.140, V28: -0.082, Amount: 49.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.997, V2: -0.143, V3: -2.102, V4: 0.149, V5: 0.592, V6: -0.882, V7: 0.600, V8: -0.330, V9: -0.081, V10: 0.300, V11: 0.870, V12: 0.845, V13: -0.326, V14: 0.800, V15: -0.970, V16: -0.420, V17: -0.326, V18: -0.263, V19: 0.436, V20: -0.111, V21: 0.170, V22: 0.511, V23: -0.038, V24: 0.853, V25: 0.315, V26: 0.767, V27: -0.140, V28: -0.082, Amount: 49.500.
7,829
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.355, V2: 1.077, V3: 1.228, V4: -0.235, V5: 0.400, V6: -0.397, V7: 0.746, V8: -0.057, V9: -0.456, V10: -0.335, V11: -1.018, V12: 0.084, V13: 0.951, V14: -0.062, V15: 0.825, V16: 0.407, V17: -0.742, V18: -0.173, V19: 0.324, V20: 0.177, V21: -0.273, V22: -0.686, V23: -0.131, V24: -0.454, V25: -0.055, V26: 0.121, V27: 0.269, V28: 0.114, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.355, V2: 1.077, V3: 1.228, V4: -0.235, V5: 0.400, V6: -0.397, V7: 0.746, V8: -0.057, V9: -0.456, V10: -0.335, V11: -1.018, V12: 0.084, V13: 0.951, V14: -0.062, V15: 0.825, V16: 0.407, V17: -0.742, V18: -0.173, V19: 0.324, V20: 0.177, V21: -0.273, V22: -0.686, V23: -0.131, V24: -0.454, V25: -0.055, V26: 0.121, V27: 0.269, V28: 0.114, Amount: 4.490.
7,830
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.472, V2: -0.428, V3: -0.365, V4: -4.190, V5: 2.178, V6: 3.349, V7: -0.242, V8: 0.798, V9: -2.818, V10: 0.533, V11: -0.311, V12: -1.410, V13: 0.067, V14: -0.054, V15: 0.008, V16: -0.525, V17: 0.111, V18: 0.023, V19: -1.004, V20: -0.276, V21: 0.068, V22: 0.400, V23: -0.518, V24: 0.714, V25: 1.007, V26: 0.131, V27: 0.012, V28: 0.027, Amount: 15.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.472, V2: -0.428, V3: -0.365, V4: -4.190, V5: 2.178, V6: 3.349, V7: -0.242, V8: 0.798, V9: -2.818, V10: 0.533, V11: -0.311, V12: -1.410, V13: 0.067, V14: -0.054, V15: 0.008, V16: -0.525, V17: 0.111, V18: 0.023, V19: -1.004, V20: -0.276, V21: 0.068, V22: 0.400, V23: -0.518, V24: 0.714, V25: 1.007, V26: 0.131, V27: 0.012, V28: 0.027, Amount: 15.000.
7,831
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.262, V2: 0.493, V3: 0.850, V4: -0.769, V5: -0.305, V6: -1.190, V7: 0.423, V8: -0.271, V9: -1.603, V10: 0.107, V11: 0.029, V12: -1.059, V13: 0.012, V14: -0.989, V15: 0.869, V16: 1.008, V17: 1.269, V18: -1.235, V19: 1.456, V20: 0.211, V21: -0.196, V22: -0.754, V23: 0.192, V24: 0.262, V25: -0.746, V26: -0.660, V27: 0.033, V28: 0.197, Amount: 36.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.262, V2: 0.493, V3: 0.850, V4: -0.769, V5: -0.305, V6: -1.190, V7: 0.423, V8: -0.271, V9: -1.603, V10: 0.107, V11: 0.029, V12: -1.059, V13: 0.012, V14: -0.989, V15: 0.869, V16: 1.008, V17: 1.269, V18: -1.235, V19: 1.456, V20: 0.211, V21: -0.196, V22: -0.754, V23: 0.192, V24: 0.262, V25: -0.746, V26: -0.660, V27: 0.033, V28: 0.197, Amount: 36.890.
7,832
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.861, V2: -0.924, V3: 0.898, V4: 0.827, V5: -1.563, V6: 0.454, V7: -1.426, V8: 0.234, V9: 2.333, V10: -0.401, V11: -1.462, V12: 1.700, V13: 1.638, V14: -1.671, V15: -1.690, V16: -0.234, V17: 0.017, V18: -0.315, V19: 0.214, V20: -0.076, V21: 0.100, V22: 0.912, V23: 0.144, V24: 0.188, V25: -0.342, V26: 0.730, V27: 0.050, V28: -0.030, Amount: 25.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.861, V2: -0.924, V3: 0.898, V4: 0.827, V5: -1.563, V6: 0.454, V7: -1.426, V8: 0.234, V9: 2.333, V10: -0.401, V11: -1.462, V12: 1.700, V13: 1.638, V14: -1.671, V15: -1.690, V16: -0.234, V17: 0.017, V18: -0.315, V19: 0.214, V20: -0.076, V21: 0.100, V22: 0.912, V23: 0.144, V24: 0.188, V25: -0.342, V26: 0.730, V27: 0.050, V28: -0.030, Amount: 25.000.
7,833
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.171, V2: 0.057, V3: 0.848, V4: 1.333, V5: -0.737, V6: -0.507, V7: -0.212, V8: 0.023, V9: 0.727, V10: -0.158, V11: -0.877, V12: -0.023, V13: -1.110, V14: 0.098, V15: 0.036, V16: -0.116, V17: -0.050, V18: -0.431, V19: 0.057, V20: -0.207, V21: -0.350, V22: -0.909, V23: 0.118, V24: 0.318, V25: 0.333, V26: -0.637, V27: 0.040, V28: 0.031, Amount: 12.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.171, V2: 0.057, V3: 0.848, V4: 1.333, V5: -0.737, V6: -0.507, V7: -0.212, V8: 0.023, V9: 0.727, V10: -0.158, V11: -0.877, V12: -0.023, V13: -1.110, V14: 0.098, V15: 0.036, V16: -0.116, V17: -0.050, V18: -0.431, V19: 0.057, V20: -0.207, V21: -0.350, V22: -0.909, V23: 0.118, V24: 0.318, V25: 0.333, V26: -0.637, V27: 0.040, V28: 0.031, Amount: 12.990.
7,834
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.633, V2: 4.073, V3: -0.703, V4: -1.507, V5: 0.426, V6: -0.155, V7: 1.519, V8: -0.931, V9: 6.953, V10: 7.176, V11: 0.211, V12: -2.526, V13: 1.253, V14: -1.772, V15: -2.161, V16: -1.658, V17: 0.101, V18: -1.128, V19: -0.197, V20: 2.914, V21: -1.590, V22: -1.211, V23: 0.020, V24: 0.453, V25: 1.076, V26: 0.009, V27: 1.648, V28: 0.986, Amount: 0.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.633, V2: 4.073, V3: -0.703, V4: -1.507, V5: 0.426, V6: -0.155, V7: 1.519, V8: -0.931, V9: 6.953, V10: 7.176, V11: 0.211, V12: -2.526, V13: 1.253, V14: -1.772, V15: -2.161, V16: -1.658, V17: 0.101, V18: -1.128, V19: -0.197, V20: 2.914, V21: -1.590, V22: -1.211, V23: 0.020, V24: 0.453, V25: 1.076, V26: 0.009, V27: 1.648, V28: 0.986, Amount: 0.010.
7,835
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.548, V2: -0.744, V3: 2.293, V4: -2.457, V5: -0.860, V6: -0.885, V7: -0.187, V8: -0.288, V9: -2.143, V10: 0.834, V11: -0.543, V12: -0.962, V13: 0.926, V14: -0.915, V15: 0.099, V16: -0.021, V17: -0.035, V18: 0.091, V19: -0.982, V20: -0.084, V21: -0.199, V22: -0.244, V23: 0.033, V24: 0.347, V25: -0.120, V26: -0.526, V27: -0.078, V28: -0.106, Amount: 50.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.548, V2: -0.744, V3: 2.293, V4: -2.457, V5: -0.860, V6: -0.885, V7: -0.187, V8: -0.288, V9: -2.143, V10: 0.834, V11: -0.543, V12: -0.962, V13: 0.926, V14: -0.915, V15: 0.099, V16: -0.021, V17: -0.035, V18: 0.091, V19: -0.982, V20: -0.084, V21: -0.199, V22: -0.244, V23: 0.033, V24: 0.347, V25: -0.120, V26: -0.526, V27: -0.078, V28: -0.106, Amount: 50.000.
7,836
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.992, V2: 0.120, V3: 2.178, V4: 2.859, V5: -0.877, V6: 1.202, V7: -1.190, V8: 0.453, V9: 1.407, V10: 0.186, V11: 2.045, V12: -1.171, V13: 2.217, V14: 0.833, V15: -1.563, V16: 0.538, V17: 0.336, V18: 0.384, V19: -1.370, V20: -0.180, V21: 0.103, V22: 0.799, V23: -0.020, V24: 0.206, V25: 0.221, V26: 0.134, V27: 0.059, V28: 0.024, Amount: 3.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.992, V2: 0.120, V3: 2.178, V4: 2.859, V5: -0.877, V6: 1.202, V7: -1.190, V8: 0.453, V9: 1.407, V10: 0.186, V11: 2.045, V12: -1.171, V13: 2.217, V14: 0.833, V15: -1.563, V16: 0.538, V17: 0.336, V18: 0.384, V19: -1.370, V20: -0.180, V21: 0.103, V22: 0.799, V23: -0.020, V24: 0.206, V25: 0.221, V26: 0.134, V27: 0.059, V28: 0.024, Amount: 3.780.
7,837
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.766, V2: 0.135, V3: 0.545, V4: 1.268, V5: -0.107, V6: 0.236, V7: -0.586, V8: -2.630, V9: -1.198, V10: -0.655, V11: 1.746, V12: 1.192, V13: -0.508, V14: 1.359, V15: 0.607, V16: -0.221, V17: 0.157, V18: -0.508, V19: 0.100, V20: 1.191, V21: -1.376, V22: -0.762, V23: -0.597, V24: 0.190, V25: 0.463, V26: -0.622, V27: 0.044, V28: 0.280, Amount: 304.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.766, V2: 0.135, V3: 0.545, V4: 1.268, V5: -0.107, V6: 0.236, V7: -0.586, V8: -2.630, V9: -1.198, V10: -0.655, V11: 1.746, V12: 1.192, V13: -0.508, V14: 1.359, V15: 0.607, V16: -0.221, V17: 0.157, V18: -0.508, V19: 0.100, V20: 1.191, V21: -1.376, V22: -0.762, V23: -0.597, V24: 0.190, V25: 0.463, V26: -0.622, V27: 0.044, V28: 0.280, Amount: 304.920.
7,838
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.142, V2: 1.361, V3: 1.928, V4: 3.245, V5: -0.566, V6: 0.845, V7: -1.133, V8: -2.570, V9: -1.329, V10: -0.016, V11: -0.610, V12: 0.797, V13: 0.891, V14: 0.155, V15: 0.180, V16: -0.137, V17: 0.424, V18: -0.574, V19: 0.866, V20: 0.834, V21: -1.643, V22: -0.551, V23: -0.006, V24: 0.386, V25: 0.955, V26: 0.102, V27: 0.067, V28: 0.200, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.142, V2: 1.361, V3: 1.928, V4: 3.245, V5: -0.566, V6: 0.845, V7: -1.133, V8: -2.570, V9: -1.329, V10: -0.016, V11: -0.610, V12: 0.797, V13: 0.891, V14: 0.155, V15: 0.180, V16: -0.137, V17: 0.424, V18: -0.574, V19: 0.866, V20: 0.834, V21: -1.643, V22: -0.551, V23: -0.006, V24: 0.386, V25: 0.955, V26: 0.102, V27: 0.067, V28: 0.200, Amount: 1.000.
7,839
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.918, V2: -0.297, V3: -0.502, V4: 1.486, V5: -0.273, V6: 0.130, V7: -0.394, V8: 0.172, V9: 1.398, V10: 0.015, V11: -1.586, V12: -0.117, V13: -1.704, V14: 0.025, V15: -0.953, V16: -0.368, V17: 0.050, V18: -0.730, V19: 0.181, V20: -0.344, V21: -0.539, V22: -1.383, V23: 0.482, V24: 0.546, V25: -0.363, V26: -1.129, V27: 0.041, V28: -0.026, Amount: 18.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.918, V2: -0.297, V3: -0.502, V4: 1.486, V5: -0.273, V6: 0.130, V7: -0.394, V8: 0.172, V9: 1.398, V10: 0.015, V11: -1.586, V12: -0.117, V13: -1.704, V14: 0.025, V15: -0.953, V16: -0.368, V17: 0.050, V18: -0.730, V19: 0.181, V20: -0.344, V21: -0.539, V22: -1.383, V23: 0.482, V24: 0.546, V25: -0.363, V26: -1.129, V27: 0.041, V28: -0.026, Amount: 18.490.
7,840
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.132, V2: -0.069, V3: -1.933, V4: 0.300, V5: 0.478, V6: -0.987, V7: 0.463, V8: -0.389, V9: 0.517, V10: 0.125, V11: -1.654, V12: -0.200, V13: -0.555, V14: 0.480, V15: -0.330, V16: -0.323, V17: -0.312, V18: -0.533, V19: 0.484, V20: -0.240, V21: -0.088, V22: -0.071, V23: -0.013, V24: -0.669, V25: 0.258, V26: 0.607, V27: -0.102, V28: -0.085, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.132, V2: -0.069, V3: -1.933, V4: 0.300, V5: 0.478, V6: -0.987, V7: 0.463, V8: -0.389, V9: 0.517, V10: 0.125, V11: -1.654, V12: -0.200, V13: -0.555, V14: 0.480, V15: -0.330, V16: -0.323, V17: -0.312, V18: -0.533, V19: 0.484, V20: -0.240, V21: -0.088, V22: -0.071, V23: -0.013, V24: -0.669, V25: 0.258, V26: 0.607, V27: -0.102, V28: -0.085, Amount: 9.990.
7,841
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.650, V2: 0.681, V3: 1.533, V4: -0.535, V5: 0.736, V6: -0.896, V7: 1.670, V8: -0.666, V9: -0.463, V10: -0.259, V11: 0.325, V12: 0.268, V13: 0.284, V14: -0.155, V15: 0.359, V16: -0.399, V17: -0.352, V18: -1.453, V19: -0.892, V20: -0.003, V21: -0.316, V22: -0.659, V23: 0.021, V24: 0.393, V25: -0.433, V26: -0.104, V27: -0.393, V28: -0.320, Amount: 57.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.650, V2: 0.681, V3: 1.533, V4: -0.535, V5: 0.736, V6: -0.896, V7: 1.670, V8: -0.666, V9: -0.463, V10: -0.259, V11: 0.325, V12: 0.268, V13: 0.284, V14: -0.155, V15: 0.359, V16: -0.399, V17: -0.352, V18: -1.453, V19: -0.892, V20: -0.003, V21: -0.316, V22: -0.659, V23: 0.021, V24: 0.393, V25: -0.433, V26: -0.104, V27: -0.393, V28: -0.320, Amount: 57.900.
7,842
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.192, V2: -6.421, V3: 0.585, V4: -0.748, V5: -4.383, V6: 1.236, V7: 3.526, V8: -0.209, V9: -2.032, V10: -0.810, V11: -1.340, V12: -1.336, V13: 0.175, V14: -0.918, V15: -1.194, V16: -0.325, V17: 0.670, V18: 0.606, V19: -0.672, V20: 3.437, V21: 0.728, V22: -0.579, V23: 3.734, V24: 0.153, V25: 0.975, V26: -0.369, V27: -0.501, V28: 0.215, Amount: 1553.120.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.192, V2: -6.421, V3: 0.585, V4: -0.748, V5: -4.383, V6: 1.236, V7: 3.526, V8: -0.209, V9: -2.032, V10: -0.810, V11: -1.340, V12: -1.336, V13: 0.175, V14: -0.918, V15: -1.194, V16: -0.325, V17: 0.670, V18: 0.606, V19: -0.672, V20: 3.437, V21: 0.728, V22: -0.579, V23: 3.734, V24: 0.153, V25: 0.975, V26: -0.369, V27: -0.501, V28: 0.215, Amount: 1553.120.
7,843
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.936, V2: 1.565, V3: -0.668, V4: -0.766, V5: 0.712, V6: -0.430, V7: 0.911, V8: -0.509, V9: 0.727, V10: 0.877, V11: -1.907, V12: -0.483, V13: -0.219, V14: -0.118, V15: -0.059, V16: -0.145, V17: -0.676, V18: -0.328, V19: 0.831, V20: -0.091, V21: -0.040, V22: -0.470, V23: 0.140, V24: -1.022, V25: -1.356, V26: 0.018, V27: -0.932, V28: 0.296, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.936, V2: 1.565, V3: -0.668, V4: -0.766, V5: 0.712, V6: -0.430, V7: 0.911, V8: -0.509, V9: 0.727, V10: 0.877, V11: -1.907, V12: -0.483, V13: -0.219, V14: -0.118, V15: -0.059, V16: -0.145, V17: -0.676, V18: -0.328, V19: 0.831, V20: -0.091, V21: -0.040, V22: -0.470, V23: 0.140, V24: -1.022, V25: -1.356, V26: 0.018, V27: -0.932, V28: 0.296, Amount: 4.490.
7,844
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.148, V2: 1.386, V3: 0.442, V4: -0.403, V5: -1.309, V6: 0.285, V7: 0.111, V8: 1.159, V9: -0.534, V10: -1.587, V11: -1.216, V12: 0.701, V13: 1.065, V14: 0.667, V15: 0.918, V16: 0.554, V17: -0.121, V18: 0.220, V19: 0.371, V20: -0.367, V21: -0.029, V22: -0.433, V23: 0.014, V24: 0.657, V25: 0.420, V26: -0.453, V27: -0.433, V28: -0.252, Amount: 153.390.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.148, V2: 1.386, V3: 0.442, V4: -0.403, V5: -1.309, V6: 0.285, V7: 0.111, V8: 1.159, V9: -0.534, V10: -1.587, V11: -1.216, V12: 0.701, V13: 1.065, V14: 0.667, V15: 0.918, V16: 0.554, V17: -0.121, V18: 0.220, V19: 0.371, V20: -0.367, V21: -0.029, V22: -0.433, V23: 0.014, V24: 0.657, V25: 0.420, V26: -0.453, V27: -0.433, V28: -0.252, Amount: 153.390.
7,845
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.093, V2: -0.194, V3: 0.609, V4: 0.746, V5: -0.468, V6: 0.217, V7: -0.332, V8: 0.208, V9: 0.421, V10: -0.094, V11: 1.081, V12: 1.081, V13: -0.482, V14: 0.088, V15: -0.789, V16: -0.414, V17: 0.125, V18: -0.476, V19: 0.115, V20: -0.119, V21: -0.020, V22: 0.119, V23: -0.068, V24: 0.080, V25: 0.429, V26: 0.422, V27: -0.007, V28: 0.002, Amount: 28.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.093, V2: -0.194, V3: 0.609, V4: 0.746, V5: -0.468, V6: 0.217, V7: -0.332, V8: 0.208, V9: 0.421, V10: -0.094, V11: 1.081, V12: 1.081, V13: -0.482, V14: 0.088, V15: -0.789, V16: -0.414, V17: 0.125, V18: -0.476, V19: 0.115, V20: -0.119, V21: -0.020, V22: 0.119, V23: -0.068, V24: 0.080, V25: 0.429, V26: 0.422, V27: -0.007, V28: 0.002, Amount: 28.750.
7,846
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.185, V2: 0.900, V3: 2.004, V4: 0.768, V5: 0.582, V6: 0.824, V7: 0.854, V8: -0.127, V9: 0.449, V10: 0.640, V11: 0.557, V12: 0.507, V13: -0.691, V14: -0.658, V15: -1.324, V16: -0.872, V17: -0.115, V18: -0.126, V19: 1.625, V20: 0.268, V21: -0.671, V22: -1.192, V23: -0.041, V24: 0.682, V25: 0.390, V26: -0.905, V27: -0.085, V28: -0.265, Amount: 20.240.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.185, V2: 0.900, V3: 2.004, V4: 0.768, V5: 0.582, V6: 0.824, V7: 0.854, V8: -0.127, V9: 0.449, V10: 0.640, V11: 0.557, V12: 0.507, V13: -0.691, V14: -0.658, V15: -1.324, V16: -0.872, V17: -0.115, V18: -0.126, V19: 1.625, V20: 0.268, V21: -0.671, V22: -1.192, V23: -0.041, V24: 0.682, V25: 0.390, V26: -0.905, V27: -0.085, V28: -0.265, Amount: 20.240.
7,847
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.774, V2: -1.028, V3: 1.550, V4: -0.247, V5: 0.998, V6: 0.116, V7: -0.654, V8: 0.163, V9: 1.156, V10: -0.506, V11: -1.749, V12: -0.199, V13: 0.446, V14: -0.680, V15: 1.009, V16: 0.491, V17: -1.082, V18: 1.090, V19: 0.161, V20: 0.438, V21: 0.394, V22: 1.057, V23: 0.197, V24: 0.040, V25: -0.890, V26: -0.343, V27: 0.077, V28: 0.050, Amount: 59.760.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.774, V2: -1.028, V3: 1.550, V4: -0.247, V5: 0.998, V6: 0.116, V7: -0.654, V8: 0.163, V9: 1.156, V10: -0.506, V11: -1.749, V12: -0.199, V13: 0.446, V14: -0.680, V15: 1.009, V16: 0.491, V17: -1.082, V18: 1.090, V19: 0.161, V20: 0.438, V21: 0.394, V22: 1.057, V23: 0.197, V24: 0.040, V25: -0.890, V26: -0.343, V27: 0.077, V28: 0.050, Amount: 59.760.
7,848
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.934, V2: 1.680, V3: 1.323, V4: -1.847, V5: 0.499, V6: -1.163, V7: 1.853, V8: -1.541, V9: 2.390, V10: 3.232, V11: 0.352, V12: -0.272, V13: 0.262, V14: -1.954, V15: 0.669, V16: -0.210, V17: -1.378, V18: -0.814, V19: -0.869, V20: 1.175, V21: -0.559, V22: -0.091, V23: -0.094, V24: 0.422, V25: -0.008, V26: 0.584, V27: -0.540, V28: -0.870, Amount: 1.540.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.934, V2: 1.680, V3: 1.323, V4: -1.847, V5: 0.499, V6: -1.163, V7: 1.853, V8: -1.541, V9: 2.390, V10: 3.232, V11: 0.352, V12: -0.272, V13: 0.262, V14: -1.954, V15: 0.669, V16: -0.210, V17: -1.378, V18: -0.814, V19: -0.869, V20: 1.175, V21: -0.559, V22: -0.091, V23: -0.094, V24: 0.422, V25: -0.008, V26: 0.584, V27: -0.540, V28: -0.870, Amount: 1.540.
7,849
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.069, V2: 0.047, V3: 0.532, V4: 1.037, V5: -0.147, V6: 0.311, V7: -0.225, V8: 0.151, V9: -0.148, V10: 0.139, V11: 1.274, V12: 1.124, V13: 0.633, V14: 0.279, V15: 0.646, V16: 0.318, V17: -0.692, V18: 0.268, V19: -0.573, V20: -0.019, V21: 0.259, V22: 0.739, V23: -0.193, V24: -0.265, V25: 0.565, V26: -0.196, V27: 0.043, V28: 0.019, Amount: 47.450.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.069, V2: 0.047, V3: 0.532, V4: 1.037, V5: -0.147, V6: 0.311, V7: -0.225, V8: 0.151, V9: -0.148, V10: 0.139, V11: 1.274, V12: 1.124, V13: 0.633, V14: 0.279, V15: 0.646, V16: 0.318, V17: -0.692, V18: 0.268, V19: -0.573, V20: -0.019, V21: 0.259, V22: 0.739, V23: -0.193, V24: -0.265, V25: 0.565, V26: -0.196, V27: 0.043, V28: 0.019, Amount: 47.450.
7,850
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.991, V2: -0.033, V3: -2.048, V4: 0.153, V5: 0.635, V6: -0.324, V7: 0.058, V8: -0.084, V9: 0.763, V10: -0.757, V11: 0.461, V12: 0.883, V13: 0.372, V14: -1.530, V15: -0.739, V16: 0.444, V17: 0.602, V18: 0.768, V19: 0.696, V20: -0.065, V21: -0.244, V22: -0.494, V23: 0.024, V24: -1.211, V25: 0.033, V26: -0.043, V27: -0.009, V28: -0.034, Amount: 35.380.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.991, V2: -0.033, V3: -2.048, V4: 0.153, V5: 0.635, V6: -0.324, V7: 0.058, V8: -0.084, V9: 0.763, V10: -0.757, V11: 0.461, V12: 0.883, V13: 0.372, V14: -1.530, V15: -0.739, V16: 0.444, V17: 0.602, V18: 0.768, V19: 0.696, V20: -0.065, V21: -0.244, V22: -0.494, V23: 0.024, V24: -1.211, V25: 0.033, V26: -0.043, V27: -0.009, V28: -0.034, Amount: 35.380.
7,851
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.620, V2: 0.128, V3: 1.290, V4: -1.487, V5: -0.179, V6: -1.847, V7: 0.626, V8: -0.297, V9: -1.668, V10: 0.064, V11: -0.396, V12: -0.718, V13: -0.801, V14: 0.407, V15: 0.025, V16: -1.565, V17: 0.100, V18: 0.691, V19: -1.372, V20: -0.499, V21: -0.277, V22: -0.513, V23: -0.074, V24: 0.919, V25: -0.024, V26: 0.888, V27: -0.036, V28: 0.090, Amount: 9.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.620, V2: 0.128, V3: 1.290, V4: -1.487, V5: -0.179, V6: -1.847, V7: 0.626, V8: -0.297, V9: -1.668, V10: 0.064, V11: -0.396, V12: -0.718, V13: -0.801, V14: 0.407, V15: 0.025, V16: -1.565, V17: 0.100, V18: 0.691, V19: -1.372, V20: -0.499, V21: -0.277, V22: -0.513, V23: -0.074, V24: 0.919, V25: -0.024, V26: 0.888, V27: -0.036, V28: 0.090, Amount: 9.000.
7,852
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.072, V2: -1.704, V3: -0.825, V4: -1.789, V5: -0.787, V6: 1.158, V7: -1.572, V8: 0.395, V9: -1.274, V10: 1.571, V11: 1.036, V12: 0.051, V13: 0.338, V14: -0.265, V15: 0.079, V16: -1.075, V17: 0.957, V18: -0.815, V19: -0.953, V20: -0.468, V21: -0.013, V22: 0.517, V23: 0.273, V24: -1.435, V25: -0.509, V26: -0.078, V27: 0.071, V28: -0.065, Amount: 41.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.072, V2: -1.704, V3: -0.825, V4: -1.789, V5: -0.787, V6: 1.158, V7: -1.572, V8: 0.395, V9: -1.274, V10: 1.571, V11: 1.036, V12: 0.051, V13: 0.338, V14: -0.265, V15: 0.079, V16: -1.075, V17: 0.957, V18: -0.815, V19: -0.953, V20: -0.468, V21: -0.013, V22: 0.517, V23: 0.273, V24: -1.435, V25: -0.509, V26: -0.078, V27: 0.071, V28: -0.065, Amount: 41.600.
7,853
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.072, V2: -0.263, V3: -1.455, V4: -0.142, V5: 0.547, V6: 0.353, V7: -0.209, V8: 0.023, V9: 0.449, V10: 0.197, V11: 0.103, V12: 1.006, V13: 0.814, V14: 0.142, V15: -0.383, V16: 0.460, V17: -0.985, V18: 0.204, V19: 0.587, V20: -0.088, V21: -0.035, V22: 0.023, V23: 0.099, V24: -0.297, V25: -0.070, V26: 0.569, V27: -0.071, V28: -0.073, Amount: 10.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.072, V2: -0.263, V3: -1.455, V4: -0.142, V5: 0.547, V6: 0.353, V7: -0.209, V8: 0.023, V9: 0.449, V10: 0.197, V11: 0.103, V12: 1.006, V13: 0.814, V14: 0.142, V15: -0.383, V16: 0.460, V17: -0.985, V18: 0.204, V19: 0.587, V20: -0.088, V21: -0.035, V22: 0.023, V23: 0.099, V24: -0.297, V25: -0.070, V26: 0.569, V27: -0.071, V28: -0.073, Amount: 10.000.
7,854
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -13.583, V2: 7.935, V3: -13.445, V4: 2.277, V5: -8.384, V6: -2.836, V7: -5.697, V8: 8.997, V9: 0.090, V10: 0.093, V11: -2.007, V12: 2.910, V13: 1.018, V14: 2.118, V15: 0.898, V16: 3.527, V17: 6.311, V18: 2.011, V19: -1.260, V20: 0.135, V21: -0.026, V22: -1.327, V23: -0.452, V24: 0.094, V25: 0.726, V26: -0.355, V27: -0.202, V28: -0.344, Amount: 89.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -13.583, V2: 7.935, V3: -13.445, V4: 2.277, V5: -8.384, V6: -2.836, V7: -5.697, V8: 8.997, V9: 0.090, V10: 0.093, V11: -2.007, V12: 2.910, V13: 1.018, V14: 2.118, V15: 0.898, V16: 3.527, V17: 6.311, V18: 2.011, V19: -1.260, V20: 0.135, V21: -0.026, V22: -1.327, V23: -0.452, V24: 0.094, V25: 0.726, V26: -0.355, V27: -0.202, V28: -0.344, Amount: 89.990.
7,855
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.313, V2: 0.877, V3: 2.256, V4: 1.092, V5: -0.768, V6: -0.128, V7: -0.222, V8: 0.649, V9: -0.188, V10: -0.598, V11: -0.719, V12: 0.249, V13: 0.263, V14: 0.046, V15: 1.014, V16: 0.020, V17: 0.018, V18: 0.363, V19: 0.195, V20: 0.229, V21: 0.134, V22: 0.325, V23: -0.136, V24: 0.372, V25: 0.345, V26: -0.458, V27: 0.253, V28: 0.056, Amount: 45.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.313, V2: 0.877, V3: 2.256, V4: 1.092, V5: -0.768, V6: -0.128, V7: -0.222, V8: 0.649, V9: -0.188, V10: -0.598, V11: -0.719, V12: 0.249, V13: 0.263, V14: 0.046, V15: 1.014, V16: 0.020, V17: 0.018, V18: 0.363, V19: 0.195, V20: 0.229, V21: 0.134, V22: 0.325, V23: -0.136, V24: 0.372, V25: 0.345, V26: -0.458, V27: 0.253, V28: 0.056, Amount: 45.000.
7,856
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.012, V2: -0.937, V3: -0.631, V4: -0.394, V5: -0.632, V6: 0.315, V7: -0.898, V8: 0.111, V9: -0.391, V10: 0.975, V11: 0.338, V12: 0.883, V13: 0.922, V14: -0.123, V15: -0.336, V16: -0.775, V17: -0.742, V18: 1.532, V19: -0.439, V20: -0.430, V21: -0.563, V22: -1.200, V23: 0.432, V24: 0.223, V25: -0.646, V26: -0.094, V27: -0.006, V28: -0.033, Amount: 54.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.012, V2: -0.937, V3: -0.631, V4: -0.394, V5: -0.632, V6: 0.315, V7: -0.898, V8: 0.111, V9: -0.391, V10: 0.975, V11: 0.338, V12: 0.883, V13: 0.922, V14: -0.123, V15: -0.336, V16: -0.775, V17: -0.742, V18: 1.532, V19: -0.439, V20: -0.430, V21: -0.563, V22: -1.200, V23: 0.432, V24: 0.223, V25: -0.646, V26: -0.094, V27: -0.006, V28: -0.033, Amount: 54.950.
7,857
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.469, V2: -1.878, V3: 1.413, V4: -1.188, V5: -1.981, V6: 0.300, V7: -0.792, V8: 0.574, V9: -2.439, V10: 0.738, V11: 0.470, V12: 0.035, V13: 1.440, V14: -0.500, V15: -0.409, V16: -0.259, V17: 0.572, V18: 1.261, V19: 0.851, V20: 0.637, V21: 0.374, V22: 0.713, V23: 0.510, V24: 0.005, V25: -0.199, V26: -0.024, V27: -0.002, V28: -0.035, Amount: 293.540.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.469, V2: -1.878, V3: 1.413, V4: -1.188, V5: -1.981, V6: 0.300, V7: -0.792, V8: 0.574, V9: -2.439, V10: 0.738, V11: 0.470, V12: 0.035, V13: 1.440, V14: -0.500, V15: -0.409, V16: -0.259, V17: 0.572, V18: 1.261, V19: 0.851, V20: 0.637, V21: 0.374, V22: 0.713, V23: 0.510, V24: 0.005, V25: -0.199, V26: -0.024, V27: -0.002, V28: -0.035, Amount: 293.540.
7,858
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.930, V2: -1.719, V3: 2.993, V4: -3.137, V5: 0.202, V6: 0.283, V7: -1.272, V8: 0.823, V9: 2.848, V10: -2.864, V11: 0.725, V12: 2.171, V13: -0.311, V14: -1.077, V15: -1.726, V16: -1.432, V17: 0.379, V18: -0.163, V19: -0.404, V20: 0.074, V21: 0.370, V22: 1.259, V23: -0.237, V24: -0.199, V25: 0.791, V26: -0.699, V27: 0.127, V28: 0.077, Amount: 30.470.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.930, V2: -1.719, V3: 2.993, V4: -3.137, V5: 0.202, V6: 0.283, V7: -1.272, V8: 0.823, V9: 2.848, V10: -2.864, V11: 0.725, V12: 2.171, V13: -0.311, V14: -1.077, V15: -1.726, V16: -1.432, V17: 0.379, V18: -0.163, V19: -0.404, V20: 0.074, V21: 0.370, V22: 1.259, V23: -0.237, V24: -0.199, V25: 0.791, V26: -0.699, V27: 0.127, V28: 0.077, Amount: 30.470.
7,859
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.009, V2: 1.657, V3: 0.064, V4: 0.893, V5: 0.216, V6: 0.154, V7: 0.836, V8: -0.007, V9: -0.324, V10: 0.547, V11: 1.334, V12: -0.435, V13: -1.433, V14: -0.488, V15: 1.086, V16: -0.191, V17: 0.832, V18: 0.722, V19: 0.815, V20: -0.350, V21: 0.028, V22: 0.153, V23: -0.354, V24: -0.408, V25: -0.048, V26: -0.378, V27: -1.606, V28: -0.708, Amount: 65.730.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.009, V2: 1.657, V3: 0.064, V4: 0.893, V5: 0.216, V6: 0.154, V7: 0.836, V8: -0.007, V9: -0.324, V10: 0.547, V11: 1.334, V12: -0.435, V13: -1.433, V14: -0.488, V15: 1.086, V16: -0.191, V17: 0.832, V18: 0.722, V19: 0.815, V20: -0.350, V21: 0.028, V22: 0.153, V23: -0.354, V24: -0.408, V25: -0.048, V26: -0.378, V27: -1.606, V28: -0.708, Amount: 65.730.
7,860
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.072, V2: -0.189, V3: 0.453, V4: 0.086, V5: -0.682, V6: -0.848, V7: 0.023, V8: -0.150, V9: -0.198, V10: -0.025, V11: 1.779, V12: 1.358, V13: 0.761, V14: 0.298, V15: 0.325, V16: 0.435, V17: -0.551, V18: -0.146, V19: 0.183, V20: 0.150, V21: -0.004, V22: -0.192, V23: -0.005, V24: 0.612, V25: 0.148, V26: 0.862, V27: -0.094, V28: 0.014, Amount: 86.110.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.072, V2: -0.189, V3: 0.453, V4: 0.086, V5: -0.682, V6: -0.848, V7: 0.023, V8: -0.150, V9: -0.198, V10: -0.025, V11: 1.779, V12: 1.358, V13: 0.761, V14: 0.298, V15: 0.325, V16: 0.435, V17: -0.551, V18: -0.146, V19: 0.183, V20: 0.150, V21: -0.004, V22: -0.192, V23: -0.005, V24: 0.612, V25: 0.148, V26: 0.862, V27: -0.094, V28: 0.014, Amount: 86.110.
7,861
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.410, V2: 1.085, V3: 1.281, V4: 0.017, V5: 0.304, V6: -0.528, V7: 0.642, V8: 0.037, V9: -0.479, V10: -0.568, V11: 0.104, V12: 0.305, V13: 0.655, V14: -0.510, V15: 1.086, V16: 0.063, V17: 0.256, V18: -0.655, V19: -0.453, V20: 0.126, V21: -0.227, V22: -0.532, V23: 0.013, V24: 0.038, V25: -0.213, V26: 0.100, V27: 0.265, V28: 0.097, Amount: 2.280.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.410, V2: 1.085, V3: 1.281, V4: 0.017, V5: 0.304, V6: -0.528, V7: 0.642, V8: 0.037, V9: -0.479, V10: -0.568, V11: 0.104, V12: 0.305, V13: 0.655, V14: -0.510, V15: 1.086, V16: 0.063, V17: 0.256, V18: -0.655, V19: -0.453, V20: 0.126, V21: -0.227, V22: -0.532, V23: 0.013, V24: 0.038, V25: -0.213, V26: 0.100, V27: 0.265, V28: 0.097, Amount: 2.280.
7,862
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.217, V2: 0.620, V3: -0.475, V4: 1.165, V5: 0.245, V6: -0.747, V7: 0.159, V8: -0.041, V9: -0.231, V10: -0.493, V11: 1.420, V12: 0.124, V13: -0.727, V14: -1.032, V15: 0.483, V16: 0.919, V17: 0.561, V18: 1.274, V19: -0.208, V20: -0.117, V21: -0.045, V22: -0.122, V23: -0.169, V24: -0.148, V25: 0.683, V26: -0.322, V27: 0.027, V28: 0.043, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.217, V2: 0.620, V3: -0.475, V4: 1.165, V5: 0.245, V6: -0.747, V7: 0.159, V8: -0.041, V9: -0.231, V10: -0.493, V11: 1.420, V12: 0.124, V13: -0.727, V14: -1.032, V15: 0.483, V16: 0.919, V17: 0.561, V18: 1.274, V19: -0.208, V20: -0.117, V21: -0.045, V22: -0.122, V23: -0.169, V24: -0.148, V25: 0.683, V26: -0.322, V27: 0.027, V28: 0.043, Amount: 1.000.
7,863
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.549, V2: -5.338, V3: 2.532, V4: 1.723, V5: 5.158, V6: -3.258, V7: -3.718, V8: 0.349, V9: 0.551, V10: 0.218, V11: 0.633, V12: 1.230, V13: 0.545, V14: -0.264, V15: -0.257, V16: 0.822, V17: -1.005, V18: 0.728, V19: -0.237, V20: -1.006, V21: -0.101, V22: 0.346, V23: -1.259, V24: 0.217, V25: 0.384, V26: -0.265, V27: 0.885, V28: -0.301, Amount: 131.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.549, V2: -5.338, V3: 2.532, V4: 1.723, V5: 5.158, V6: -3.258, V7: -3.718, V8: 0.349, V9: 0.551, V10: 0.218, V11: 0.633, V12: 1.230, V13: 0.545, V14: -0.264, V15: -0.257, V16: 0.822, V17: -1.005, V18: 0.728, V19: -0.237, V20: -1.006, V21: -0.101, V22: 0.346, V23: -1.259, V24: 0.217, V25: 0.384, V26: -0.265, V27: 0.885, V28: -0.301, Amount: 131.000.
7,864
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.972, V2: 1.012, V3: 1.911, V4: -0.273, V5: 0.082, V6: -0.922, V7: 0.716, V8: -0.136, V9: -0.423, V10: -0.479, V11: -0.502, V12: -0.373, V13: -0.523, V14: 0.196, V15: 0.791, V16: 0.304, V17: -0.456, V18: -0.324, V19: -0.190, V20: -0.098, V21: -0.176, V22: -0.746, V23: -0.152, V24: 0.367, V25: 0.126, V26: 0.049, V27: -0.298, V28: 0.104, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.972, V2: 1.012, V3: 1.911, V4: -0.273, V5: 0.082, V6: -0.922, V7: 0.716, V8: -0.136, V9: -0.423, V10: -0.479, V11: -0.502, V12: -0.373, V13: -0.523, V14: 0.196, V15: 0.791, V16: 0.304, V17: -0.456, V18: -0.324, V19: -0.190, V20: -0.098, V21: -0.176, V22: -0.746, V23: -0.152, V24: 0.367, V25: 0.126, V26: 0.049, V27: -0.298, V28: 0.104, Amount: 0.000.
7,865
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.728, V2: 0.444, V3: 1.486, V4: 1.111, V5: 0.888, V6: -0.516, V7: 0.559, V8: -0.276, V9: -0.472, V10: 0.178, V11: -0.142, V12: -0.083, V13: 0.099, V14: 0.139, V15: 1.537, V16: -0.823, V17: 0.105, V18: -0.354, V19: 0.423, V20: 0.027, V21: 0.119, V22: 0.594, V23: -0.248, V24: 0.112, V25: -0.241, V26: -0.265, V27: -0.066, V28: -0.076, Amount: 22.690.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.728, V2: 0.444, V3: 1.486, V4: 1.111, V5: 0.888, V6: -0.516, V7: 0.559, V8: -0.276, V9: -0.472, V10: 0.178, V11: -0.142, V12: -0.083, V13: 0.099, V14: 0.139, V15: 1.537, V16: -0.823, V17: 0.105, V18: -0.354, V19: 0.423, V20: 0.027, V21: 0.119, V22: 0.594, V23: -0.248, V24: 0.112, V25: -0.241, V26: -0.265, V27: -0.066, V28: -0.076, Amount: 22.690.
7,866
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.264, V2: -0.593, V3: -0.111, V4: -0.595, V5: -0.603, V6: -0.113, V7: -0.684, V8: 0.167, V9: -0.695, V10: 0.269, V11: 1.280, V12: -0.552, V13: -1.155, V14: -0.916, V15: -0.233, V16: 1.169, V17: 1.282, V18: -0.950, V19: 0.722, V20: 0.069, V21: -0.017, V22: -0.154, V23: -0.049, V24: -0.405, V25: 0.368, V26: -0.268, V27: 0.021, V28: 0.024, Amount: 43.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.264, V2: -0.593, V3: -0.111, V4: -0.595, V5: -0.603, V6: -0.113, V7: -0.684, V8: 0.167, V9: -0.695, V10: 0.269, V11: 1.280, V12: -0.552, V13: -1.155, V14: -0.916, V15: -0.233, V16: 1.169, V17: 1.282, V18: -0.950, V19: 0.722, V20: 0.069, V21: -0.017, V22: -0.154, V23: -0.049, V24: -0.405, V25: 0.368, V26: -0.268, V27: 0.021, V28: 0.024, Amount: 43.780.
7,867
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.760, V2: -1.182, V3: 0.662, V4: -2.353, V5: 0.121, V6: 1.084, V7: -0.763, V8: 1.124, V9: -0.883, V10: -0.314, V11: 0.406, V12: -0.692, V13: -1.033, V14: 0.232, V15: 0.134, V16: 1.261, V17: 0.305, V18: -1.241, V19: -0.952, V20: 0.436, V21: 0.677, V22: 1.346, V23: 0.035, V24: -1.645, V25: -0.029, V26: -0.018, V27: 0.233, V28: -0.033, Amount: 142.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.760, V2: -1.182, V3: 0.662, V4: -2.353, V5: 0.121, V6: 1.084, V7: -0.763, V8: 1.124, V9: -0.883, V10: -0.314, V11: 0.406, V12: -0.692, V13: -1.033, V14: 0.232, V15: 0.134, V16: 1.261, V17: 0.305, V18: -1.241, V19: -0.952, V20: 0.436, V21: 0.677, V22: 1.346, V23: 0.035, V24: -1.645, V25: -0.029, V26: -0.018, V27: 0.233, V28: -0.033, Amount: 142.500.
7,868
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.740, V2: 1.431, V3: -0.390, V4: -0.927, V5: 1.051, V6: -0.508, V7: 1.150, V8: -0.223, V9: 0.320, V10: 0.338, V11: 1.162, V12: 0.319, V13: -0.530, V14: -1.090, V15: -0.906, V16: 0.246, V17: 0.075, V18: 0.165, V19: -0.086, V20: 0.289, V21: -0.277, V22: -0.470, V23: 0.144, V24: 0.589, V25: -1.031, V26: -0.049, V27: 0.185, V28: 0.221, Amount: 7.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.740, V2: 1.431, V3: -0.390, V4: -0.927, V5: 1.051, V6: -0.508, V7: 1.150, V8: -0.223, V9: 0.320, V10: 0.338, V11: 1.162, V12: 0.319, V13: -0.530, V14: -1.090, V15: -0.906, V16: 0.246, V17: 0.075, V18: 0.165, V19: -0.086, V20: 0.289, V21: -0.277, V22: -0.470, V23: 0.144, V24: 0.589, V25: -1.031, V26: -0.049, V27: 0.185, V28: 0.221, Amount: 7.130.
7,869
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.167, V2: 0.671, V3: 1.403, V4: -0.950, V5: 0.751, V6: -0.792, V7: 0.503, V8: -0.912, V9: -0.653, V10: -0.799, V11: 0.067, V12: 0.855, V13: 1.182, V14: 0.035, V15: 0.458, V16: 0.033, V17: -0.201, V18: -1.525, V19: -0.552, V20: -0.279, V21: 0.335, V22: -1.481, V23: 0.146, V24: 0.102, V25: -0.444, V26: 0.407, V27: 0.120, V28: 0.070, Amount: 27.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.167, V2: 0.671, V3: 1.403, V4: -0.950, V5: 0.751, V6: -0.792, V7: 0.503, V8: -0.912, V9: -0.653, V10: -0.799, V11: 0.067, V12: 0.855, V13: 1.182, V14: 0.035, V15: 0.458, V16: 0.033, V17: -0.201, V18: -1.525, V19: -0.552, V20: -0.279, V21: 0.335, V22: -1.481, V23: 0.146, V24: 0.102, V25: -0.444, V26: 0.407, V27: 0.120, V28: 0.070, Amount: 27.790.
7,870
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.748, V2: -1.439, V3: -1.865, V4: -0.920, V5: -0.468, V6: -0.887, V7: 0.083, V8: -0.340, V9: -0.905, V10: 0.927, V11: 0.710, V12: -0.155, V13: -0.119, V14: 0.444, V15: -0.368, V16: 1.231, V17: -0.194, V18: -1.039, V19: 1.059, V20: 0.465, V21: 0.216, V22: -0.032, V23: -0.069, V24: -0.490, V25: -0.133, V26: -0.330, V27: -0.101, V28: -0.035, Amount: 259.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.748, V2: -1.439, V3: -1.865, V4: -0.920, V5: -0.468, V6: -0.887, V7: 0.083, V8: -0.340, V9: -0.905, V10: 0.927, V11: 0.710, V12: -0.155, V13: -0.119, V14: 0.444, V15: -0.368, V16: 1.231, V17: -0.194, V18: -1.039, V19: 1.059, V20: 0.465, V21: 0.216, V22: -0.032, V23: -0.069, V24: -0.490, V25: -0.133, V26: -0.330, V27: -0.101, V28: -0.035, Amount: 259.000.
7,871
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.779, V2: 1.626, V3: -1.202, V4: -0.659, V5: 0.366, V6: -0.532, V7: 0.264, V8: 0.738, V9: -0.481, V10: -0.278, V11: 0.008, V12: 1.125, V13: 0.871, V14: 1.003, V15: -0.286, V16: 0.096, V17: -0.646, V18: 0.778, V19: 0.488, V20: -0.045, V21: 0.440, V22: 1.358, V23: -0.120, V24: -0.747, V25: -0.615, V26: -0.182, V27: 0.369, V28: 0.241, Amount: 2.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.779, V2: 1.626, V3: -1.202, V4: -0.659, V5: 0.366, V6: -0.532, V7: 0.264, V8: 0.738, V9: -0.481, V10: -0.278, V11: 0.008, V12: 1.125, V13: 0.871, V14: 1.003, V15: -0.286, V16: 0.096, V17: -0.646, V18: 0.778, V19: 0.488, V20: -0.045, V21: 0.440, V22: 1.358, V23: -0.120, V24: -0.747, V25: -0.615, V26: -0.182, V27: 0.369, V28: 0.241, Amount: 2.200.
7,872
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.590, V2: -0.864, V3: -1.456, V4: 0.720, V5: -0.288, V6: -0.901, V7: 0.485, V8: -0.349, V9: 0.938, V10: -0.253, V11: -1.030, V12: 0.513, V13: -0.177, V14: 0.263, V15: -0.328, V16: -0.682, V17: -0.046, V18: -0.567, V19: 0.125, V20: 0.196, V21: 0.087, V22: 0.017, V23: -0.100, V24: -0.056, V25: 0.089, V26: -0.312, V27: -0.050, V28: -0.018, Amount: 236.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.590, V2: -0.864, V3: -1.456, V4: 0.720, V5: -0.288, V6: -0.901, V7: 0.485, V8: -0.349, V9: 0.938, V10: -0.253, V11: -1.030, V12: 0.513, V13: -0.177, V14: 0.263, V15: -0.328, V16: -0.682, V17: -0.046, V18: -0.567, V19: 0.125, V20: 0.196, V21: 0.087, V22: 0.017, V23: -0.100, V24: -0.056, V25: 0.089, V26: -0.312, V27: -0.050, V28: -0.018, Amount: 236.220.
7,873
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.865, V2: -0.324, V3: -1.117, V4: 0.450, V5: -0.181, V6: -0.857, V7: 0.097, V8: -0.203, V9: 0.165, V10: 0.319, V11: 1.141, V12: 0.959, V13: 0.055, V14: 0.596, V15: 0.030, V16: 0.253, V17: -0.714, V18: 0.150, V19: -0.159, V20: -0.066, V21: 0.249, V22: 0.639, V23: 0.052, V24: 0.065, V25: -0.100, V26: 0.358, V27: -0.073, V28: -0.058, Amount: 75.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.865, V2: -0.324, V3: -1.117, V4: 0.450, V5: -0.181, V6: -0.857, V7: 0.097, V8: -0.203, V9: 0.165, V10: 0.319, V11: 1.141, V12: 0.959, V13: 0.055, V14: 0.596, V15: 0.030, V16: 0.253, V17: -0.714, V18: 0.150, V19: -0.159, V20: -0.066, V21: 0.249, V22: 0.639, V23: 0.052, V24: 0.065, V25: -0.100, V26: 0.358, V27: -0.073, V28: -0.058, Amount: 75.980.
7,874
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.231, V2: 0.682, V3: 0.529, V4: 2.359, V5: 0.147, V6: -0.233, V7: 0.191, V8: -0.153, V9: -0.875, V10: 0.655, V11: -0.771, V12: 0.384, V13: 1.339, V14: 0.008, V15: 0.444, V16: 0.806, V17: -0.892, V18: -0.289, V19: -0.826, V20: -0.064, V21: -0.093, V22: -0.244, V23: -0.051, V24: -0.109, V25: 0.530, V26: -0.047, V27: -0.001, V28: 0.022, Amount: 0.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.231, V2: 0.682, V3: 0.529, V4: 2.359, V5: 0.147, V6: -0.233, V7: 0.191, V8: -0.153, V9: -0.875, V10: 0.655, V11: -0.771, V12: 0.384, V13: 1.339, V14: 0.008, V15: 0.444, V16: 0.806, V17: -0.892, V18: -0.289, V19: -0.826, V20: -0.064, V21: -0.093, V22: -0.244, V23: -0.051, V24: -0.109, V25: 0.530, V26: -0.047, V27: -0.001, V28: 0.022, Amount: 0.790.
7,875
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.447, V2: 0.579, V3: 1.546, V4: 0.691, V5: -0.088, V6: -0.135, V7: 0.564, V8: 0.032, V9: -0.145, V10: -0.432, V11: -1.358, V12: -0.642, V13: -0.981, V14: 0.089, V15: 0.298, V16: -0.576, V17: 0.302, V18: -0.105, V19: 1.562, V20: 0.148, V21: -0.158, V22: -0.416, V23: -0.109, V24: -0.108, V25: -0.007, V26: 0.429, V27: 0.059, V28: 0.102, Amount: 49.430.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.447, V2: 0.579, V3: 1.546, V4: 0.691, V5: -0.088, V6: -0.135, V7: 0.564, V8: 0.032, V9: -0.145, V10: -0.432, V11: -1.358, V12: -0.642, V13: -0.981, V14: 0.089, V15: 0.298, V16: -0.576, V17: 0.302, V18: -0.105, V19: 1.562, V20: 0.148, V21: -0.158, V22: -0.416, V23: -0.109, V24: -0.108, V25: -0.007, V26: 0.429, V27: 0.059, V28: 0.102, Amount: 49.430.
7,876
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.944, V2: 0.453, V3: -0.880, V4: 3.692, V5: 0.575, V6: 0.229, V7: 0.073, V8: -0.017, V9: -0.736, V10: 1.487, V11: -1.641, V12: -0.755, V13: -0.639, V14: 0.281, V15: -0.712, V16: 0.827, V17: -0.809, V18: -0.015, V19: -1.549, V20: -0.294, V21: 0.262, V22: 0.790, V23: 0.010, V24: 0.570, V25: 0.238, V26: 0.222, V27: -0.044, V28: -0.048, Amount: 10.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.944, V2: 0.453, V3: -0.880, V4: 3.692, V5: 0.575, V6: 0.229, V7: 0.073, V8: -0.017, V9: -0.736, V10: 1.487, V11: -1.641, V12: -0.755, V13: -0.639, V14: 0.281, V15: -0.712, V16: 0.827, V17: -0.809, V18: -0.015, V19: -1.549, V20: -0.294, V21: 0.262, V22: 0.790, V23: 0.010, V24: 0.570, V25: 0.238, V26: 0.222, V27: -0.044, V28: -0.048, Amount: 10.590.
7,877
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.648, V2: 0.934, V3: 1.963, V4: 0.583, V5: 0.337, V6: 0.409, V7: 0.449, V8: 0.294, V9: -0.892, V10: -0.281, V11: 1.142, V12: 0.262, V13: -0.566, V14: 0.561, V15: 0.942, V16: -0.063, V17: -0.257, V18: 0.139, V19: 0.668, V20: 0.035, V21: -0.160, V22: -0.564, V23: -0.128, V24: -0.366, V25: 0.039, V26: -0.526, V27: 0.092, V28: 0.071, Amount: 12.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.648, V2: 0.934, V3: 1.963, V4: 0.583, V5: 0.337, V6: 0.409, V7: 0.449, V8: 0.294, V9: -0.892, V10: -0.281, V11: 1.142, V12: 0.262, V13: -0.566, V14: 0.561, V15: 0.942, V16: -0.063, V17: -0.257, V18: 0.139, V19: 0.668, V20: 0.035, V21: -0.160, V22: -0.564, V23: -0.128, V24: -0.366, V25: 0.039, V26: -0.526, V27: 0.092, V28: 0.071, Amount: 12.000.
7,878
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.527, V2: 0.948, V3: -0.696, V4: -1.127, V5: 2.331, V6: 3.223, V7: -0.108, V8: 1.237, V9: -0.842, V10: -0.595, V11: -0.462, V12: -0.161, V13: -0.025, V14: 0.715, V15: 0.801, V16: 0.452, V17: -0.687, V18: 0.343, V19: 0.328, V20: -0.058, V21: 0.113, V22: 0.065, V23: -0.134, V24: 1.038, V25: -0.189, V26: 0.302, V27: -0.017, V28: 0.082, Amount: 1.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.527, V2: 0.948, V3: -0.696, V4: -1.127, V5: 2.331, V6: 3.223, V7: -0.108, V8: 1.237, V9: -0.842, V10: -0.595, V11: -0.462, V12: -0.161, V13: -0.025, V14: 0.715, V15: 0.801, V16: 0.452, V17: -0.687, V18: 0.343, V19: 0.328, V20: -0.058, V21: 0.113, V22: 0.065, V23: -0.134, V24: 1.038, V25: -0.189, V26: 0.302, V27: -0.017, V28: 0.082, Amount: 1.500.
7,879
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.823, V2: -0.462, V3: 0.262, V4: 0.795, V5: 0.059, V6: 1.098, V7: -0.128, V8: 0.390, V9: 0.391, V10: -0.408, V11: 0.514, V12: 0.752, V13: -0.517, V14: 0.218, V15: 0.827, V16: -1.721, V17: 1.417, V18: -2.686, V19: -1.490, V20: -0.071, V21: 0.045, V22: 0.215, V23: 0.018, V24: -0.579, V25: 0.174, V26: 0.465, V27: 0.019, V28: 0.015, Amount: 115.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.823, V2: -0.462, V3: 0.262, V4: 0.795, V5: 0.059, V6: 1.098, V7: -0.128, V8: 0.390, V9: 0.391, V10: -0.408, V11: 0.514, V12: 0.752, V13: -0.517, V14: 0.218, V15: 0.827, V16: -1.721, V17: 1.417, V18: -2.686, V19: -1.490, V20: -0.071, V21: 0.045, V22: 0.215, V23: 0.018, V24: -0.579, V25: 0.174, V26: 0.465, V27: 0.019, V28: 0.015, Amount: 115.500.
7,880
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.352, V2: -0.641, V3: -0.854, V4: -2.582, V5: 1.305, V6: 3.103, V7: -1.104, V8: 0.873, V9: 1.476, V10: -1.014, V11: 0.124, V12: 0.482, V13: 0.171, V14: 0.167, V15: 2.251, V16: 0.224, V17: -0.832, V18: 0.629, V19: 0.900, V20: 0.053, V21: -0.031, V22: -0.102, V23: -0.028, V24: 1.044, V25: 0.474, V26: -0.045, V27: 0.038, V28: 0.019, Amount: 0.050.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.352, V2: -0.641, V3: -0.854, V4: -2.582, V5: 1.305, V6: 3.103, V7: -1.104, V8: 0.873, V9: 1.476, V10: -1.014, V11: 0.124, V12: 0.482, V13: 0.171, V14: 0.167, V15: 2.251, V16: 0.224, V17: -0.832, V18: 0.629, V19: 0.900, V20: 0.053, V21: -0.031, V22: -0.102, V23: -0.028, V24: 1.044, V25: 0.474, V26: -0.045, V27: 0.038, V28: 0.019, Amount: 0.050.
7,881
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.038, V2: -0.368, V3: -0.684, V4: 0.235, V5: -0.118, V6: 0.250, V7: -0.608, V8: 0.027, V9: 1.368, V10: -0.199, V11: -1.518, V12: 0.688, V13: 1.191, V14: -0.441, V15: 0.472, V16: 0.275, V17: -0.847, V18: 0.363, V19: 0.054, V20: -0.108, V21: 0.150, V22: 0.700, V23: 0.051, V24: 0.081, V25: 0.053, V26: -0.206, V27: 0.042, V28: -0.035, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.038, V2: -0.368, V3: -0.684, V4: 0.235, V5: -0.118, V6: 0.250, V7: -0.608, V8: 0.027, V9: 1.368, V10: -0.199, V11: -1.518, V12: 0.688, V13: 1.191, V14: -0.441, V15: 0.472, V16: 0.275, V17: -0.847, V18: 0.363, V19: 0.054, V20: -0.108, V21: 0.150, V22: 0.700, V23: 0.051, V24: 0.081, V25: 0.053, V26: -0.206, V27: 0.042, V28: -0.035, Amount: 9.990.
7,882
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.331, V2: 0.796, V3: -0.525, V4: -0.658, V5: 1.737, V6: 0.885, V7: 1.079, V8: -0.040, V9: -0.178, V10: -0.590, V11: 1.303, V12: 0.287, V13: -0.134, V14: -0.805, V15: 0.843, V16: -0.599, V17: 0.682, V18: 0.051, V19: -0.612, V20: -0.144, V21: 0.394, V22: 1.465, V23: -0.256, V24: -1.687, V25: -0.683, V26: -0.101, V27: -0.141, V28: 0.008, Amount: 42.450.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.331, V2: 0.796, V3: -0.525, V4: -0.658, V5: 1.737, V6: 0.885, V7: 1.079, V8: -0.040, V9: -0.178, V10: -0.590, V11: 1.303, V12: 0.287, V13: -0.134, V14: -0.805, V15: 0.843, V16: -0.599, V17: 0.682, V18: 0.051, V19: -0.612, V20: -0.144, V21: 0.394, V22: 1.465, V23: -0.256, V24: -1.687, V25: -0.683, V26: -0.101, V27: -0.141, V28: 0.008, Amount: 42.450.
7,883
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.348, V2: 3.528, V3: -2.179, V4: 0.888, V5: -1.578, V6: -0.419, V7: -1.695, V8: 2.974, V9: -1.403, V10: 0.128, V11: 0.421, V12: 1.902, V13: 0.831, V14: 2.414, V15: 0.479, V16: 0.071, V17: 1.089, V18: 0.166, V19: 0.770, V20: -0.222, V21: 0.235, V22: 0.160, V23: -0.042, V24: -0.279, V25: 1.059, V26: -0.065, V27: -0.526, V28: -0.273, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.348, V2: 3.528, V3: -2.179, V4: 0.888, V5: -1.578, V6: -0.419, V7: -1.695, V8: 2.974, V9: -1.403, V10: 0.128, V11: 0.421, V12: 1.902, V13: 0.831, V14: 2.414, V15: 0.479, V16: 0.071, V17: 1.089, V18: 0.166, V19: 0.770, V20: -0.222, V21: 0.235, V22: 0.160, V23: -0.042, V24: -0.279, V25: 1.059, V26: -0.065, V27: -0.526, V28: -0.273, Amount: 0.890.
7,884
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.248, V2: -1.765, V3: 0.902, V4: 0.843, V5: -1.786, V6: -0.430, V7: -0.112, V8: -0.198, V9: 2.269, V10: -0.994, V11: 0.633, V12: -1.825, V13: 1.920, V14: 1.080, V15: -0.424, V16: 0.093, V17: 0.781, V18: -0.146, V19: -0.253, V20: 0.894, V21: 0.053, V22: -0.516, V23: -0.323, V24: 0.757, V25: -0.129, V26: 0.879, V27: -0.152, V28: 0.099, Amount: 500.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.248, V2: -1.765, V3: 0.902, V4: 0.843, V5: -1.786, V6: -0.430, V7: -0.112, V8: -0.198, V9: 2.269, V10: -0.994, V11: 0.633, V12: -1.825, V13: 1.920, V14: 1.080, V15: -0.424, V16: 0.093, V17: 0.781, V18: -0.146, V19: -0.253, V20: 0.894, V21: 0.053, V22: -0.516, V23: -0.323, V24: 0.757, V25: -0.129, V26: 0.879, V27: -0.152, V28: 0.099, Amount: 500.000.
7,885
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.430, V2: -1.543, V3: 1.538, V4: -2.667, V5: -0.896, V6: -0.709, V7: -0.726, V8: -0.218, V9: -0.998, V10: 1.016, V11: -1.352, V12: -1.191, V13: 0.409, V14: -1.210, V15: -0.447, V16: 0.158, V17: -0.265, V18: 0.489, V19: -1.110, V20: -0.410, V21: -0.002, V22: 0.635, V23: 0.468, V24: -0.069, V25: -1.325, V26: -0.524, V27: 0.026, V28: 0.070, Amount: 53.690.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.430, V2: -1.543, V3: 1.538, V4: -2.667, V5: -0.896, V6: -0.709, V7: -0.726, V8: -0.218, V9: -0.998, V10: 1.016, V11: -1.352, V12: -1.191, V13: 0.409, V14: -1.210, V15: -0.447, V16: 0.158, V17: -0.265, V18: 0.489, V19: -1.110, V20: -0.410, V21: -0.002, V22: 0.635, V23: 0.468, V24: -0.069, V25: -1.325, V26: -0.524, V27: 0.026, V28: 0.070, Amount: 53.690.
7,886
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.464, V2: 0.787, V3: 1.908, V4: 0.416, V5: 0.532, V6: 0.525, V7: 0.582, V8: 0.048, V9: -0.527, V10: -0.018, V11: 0.164, V12: -0.446, V13: -0.838, V14: 0.292, V15: 0.924, V16: 0.493, V17: -0.965, V18: 1.045, V19: 1.262, V20: 0.151, V21: -0.211, V22: -0.582, V23: -0.318, V24: -0.910, V25: 0.197, V26: -0.460, V27: -0.086, V28: -0.156, Amount: 17.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.464, V2: 0.787, V3: 1.908, V4: 0.416, V5: 0.532, V6: 0.525, V7: 0.582, V8: 0.048, V9: -0.527, V10: -0.018, V11: 0.164, V12: -0.446, V13: -0.838, V14: 0.292, V15: 0.924, V16: 0.493, V17: -0.965, V18: 1.045, V19: 1.262, V20: 0.151, V21: -0.211, V22: -0.582, V23: -0.318, V24: -0.910, V25: 0.197, V26: -0.460, V27: -0.086, V28: -0.156, Amount: 17.990.
7,887
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.276, V2: -1.600, V3: 0.634, V4: -1.462, V5: -1.736, V6: 0.243, V7: -1.543, V8: 0.264, V9: -1.513, V10: 1.558, V11: 0.792, V12: -1.101, V13: -1.025, V14: -0.030, V15: 0.605, V16: -0.045, V17: 0.363, V18: 0.816, V19: -0.467, V20: -0.268, V21: 0.130, V22: 0.559, V23: -0.132, V24: -0.326, V25: 0.256, V26: 0.028, V27: 0.044, V28: 0.021, Amount: 91.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.276, V2: -1.600, V3: 0.634, V4: -1.462, V5: -1.736, V6: 0.243, V7: -1.543, V8: 0.264, V9: -1.513, V10: 1.558, V11: 0.792, V12: -1.101, V13: -1.025, V14: -0.030, V15: 0.605, V16: -0.045, V17: 0.363, V18: 0.816, V19: -0.467, V20: -0.268, V21: 0.130, V22: 0.559, V23: -0.132, V24: -0.326, V25: 0.256, V26: 0.028, V27: 0.044, V28: 0.021, Amount: 91.500.
7,888
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.238, V2: -1.372, V3: -0.660, V4: -1.433, V5: -1.477, V6: -0.950, V7: -1.059, V8: -0.314, V9: -1.249, V10: 1.521, V11: -0.836, V12: -0.226, V13: 1.445, V14: -0.692, V15: -0.236, V16: -0.551, V17: 0.419, V18: -0.174, V19: -0.206, V20: -0.329, V21: -0.132, V22: 0.151, V23: 0.223, V24: 0.055, V25: -0.229, V26: -0.186, V27: 0.023, V28: -0.040, Amount: 39.200.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.238, V2: -1.372, V3: -0.660, V4: -1.433, V5: -1.477, V6: -0.950, V7: -1.059, V8: -0.314, V9: -1.249, V10: 1.521, V11: -0.836, V12: -0.226, V13: 1.445, V14: -0.692, V15: -0.236, V16: -0.551, V17: 0.419, V18: -0.174, V19: -0.206, V20: -0.329, V21: -0.132, V22: 0.151, V23: 0.223, V24: 0.055, V25: -0.229, V26: -0.186, V27: 0.023, V28: -0.040, Amount: 39.200.
7,889
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.590, V2: 1.576, V3: -0.504, V4: 1.108, V5: 1.487, V6: 0.079, V7: -0.104, V8: -3.476, V9: 0.980, V10: 0.012, V11: -0.237, V12: -2.302, V13: 1.542, V14: 1.957, V15: -1.010, V16: -1.101, V17: 1.085, V18: -0.040, V19: 0.602, V20: -1.048, V21: 2.850, V22: -0.661, V23: -0.162, V24: 0.556, V25: 0.084, V26: -0.396, V27: 0.811, V28: 0.166, Amount: 56.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.590, V2: 1.576, V3: -0.504, V4: 1.108, V5: 1.487, V6: 0.079, V7: -0.104, V8: -3.476, V9: 0.980, V10: 0.012, V11: -0.237, V12: -2.302, V13: 1.542, V14: 1.957, V15: -1.010, V16: -1.101, V17: 1.085, V18: -0.040, V19: 0.602, V20: -1.048, V21: 2.850, V22: -0.661, V23: -0.162, V24: 0.556, V25: 0.084, V26: -0.396, V27: 0.811, V28: 0.166, Amount: 56.000.
7,890
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.330, V2: 1.001, V3: -1.126, V4: -2.236, V5: 2.946, V6: 3.301, V7: 0.332, V8: 1.072, V9: -0.016, V10: -0.182, V11: -0.288, V12: 0.054, V13: -0.419, V14: 0.324, V15: -0.213, V16: 0.004, V17: -0.604, V18: -0.904, V19: -0.672, V20: 0.030, V21: -0.284, V22: -0.795, V23: -0.103, V24: 0.692, V25: -0.166, V26: 0.076, V27: -0.113, V28: -0.073, Amount: 5.340.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.330, V2: 1.001, V3: -1.126, V4: -2.236, V5: 2.946, V6: 3.301, V7: 0.332, V8: 1.072, V9: -0.016, V10: -0.182, V11: -0.288, V12: 0.054, V13: -0.419, V14: 0.324, V15: -0.213, V16: 0.004, V17: -0.604, V18: -0.904, V19: -0.672, V20: 0.030, V21: -0.284, V22: -0.795, V23: -0.103, V24: 0.692, V25: -0.166, V26: 0.076, V27: -0.113, V28: -0.073, Amount: 5.340.
7,891
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.861, V2: 1.185, V3: 0.698, V4: -1.425, V5: -0.147, V6: -0.671, V7: 0.190, V8: 0.404, V9: 0.064, V10: -0.595, V11: -1.199, V12: 0.308, V13: 1.001, V14: -0.045, V15: 0.466, V16: 0.958, V17: -0.883, V18: -0.176, V19: -0.485, V20: 0.099, V21: -0.142, V22: -0.381, V23: -0.081, V24: -0.397, V25: -0.042, V26: 0.779, V27: 0.162, V28: 0.056, Amount: 0.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.861, V2: 1.185, V3: 0.698, V4: -1.425, V5: -0.147, V6: -0.671, V7: 0.190, V8: 0.404, V9: 0.064, V10: -0.595, V11: -1.199, V12: 0.308, V13: 1.001, V14: -0.045, V15: 0.466, V16: 0.958, V17: -0.883, V18: -0.176, V19: -0.485, V20: 0.099, V21: -0.142, V22: -0.381, V23: -0.081, V24: -0.397, V25: -0.042, V26: 0.779, V27: 0.162, V28: 0.056, Amount: 0.770.
7,892
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.732, V2: -0.442, V3: -1.866, V4: 0.377, V5: 0.138, V6: -0.634, V7: 0.173, V8: -0.120, V9: 0.797, V10: -0.734, V11: 0.886, V12: 0.823, V13: -0.274, V14: -1.210, V15: -0.724, V16: 0.255, V17: 0.754, V18: 0.591, V19: 0.449, V20: 0.101, V21: -0.134, V22: -0.462, V23: 0.012, V24: -0.578, V25: -0.111, V26: -0.092, V27: -0.035, V28: -0.012, Amount: 146.790.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.732, V2: -0.442, V3: -1.866, V4: 0.377, V5: 0.138, V6: -0.634, V7: 0.173, V8: -0.120, V9: 0.797, V10: -0.734, V11: 0.886, V12: 0.823, V13: -0.274, V14: -1.210, V15: -0.724, V16: 0.255, V17: 0.754, V18: 0.591, V19: 0.449, V20: 0.101, V21: -0.134, V22: -0.462, V23: 0.012, V24: -0.578, V25: -0.111, V26: -0.092, V27: -0.035, V28: -0.012, Amount: 146.790.
7,893
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.141, V2: 0.244, V3: 0.884, V4: 1.138, V5: -0.528, V6: -0.478, V7: -0.138, V8: 0.002, V9: 0.143, V10: -0.086, V11: 0.202, V12: 0.541, V13: 0.152, V14: 0.249, V15: 1.382, V16: -0.020, V17: -0.160, V18: -0.766, V19: -0.851, V20: -0.161, V21: -0.140, V22: -0.373, V23: 0.179, V24: 0.354, V25: 0.186, V26: -0.614, V27: 0.055, V28: 0.035, Amount: 6.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.141, V2: 0.244, V3: 0.884, V4: 1.138, V5: -0.528, V6: -0.478, V7: -0.138, V8: 0.002, V9: 0.143, V10: -0.086, V11: 0.202, V12: 0.541, V13: 0.152, V14: 0.249, V15: 1.382, V16: -0.020, V17: -0.160, V18: -0.766, V19: -0.851, V20: -0.161, V21: -0.140, V22: -0.373, V23: 0.179, V24: 0.354, V25: 0.186, V26: -0.614, V27: 0.055, V28: 0.035, Amount: 6.990.
7,894
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.792, V2: -0.355, V3: 1.703, V4: -1.501, V5: 0.229, V6: -0.761, V7: -0.074, V8: -0.046, V9: -1.078, V10: -0.207, V11: -1.092, V12: -0.176, V13: 1.112, V14: -0.860, V15: -1.104, V16: 0.863, V17: 0.197, V18: -1.625, V19: 0.653, V20: 0.291, V21: 0.042, V22: 0.001, V23: -0.124, V24: -0.085, V25: 0.220, V26: -0.429, V27: 0.071, V28: 0.111, Amount: 19.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.792, V2: -0.355, V3: 1.703, V4: -1.501, V5: 0.229, V6: -0.761, V7: -0.074, V8: -0.046, V9: -1.078, V10: -0.207, V11: -1.092, V12: -0.176, V13: 1.112, V14: -0.860, V15: -1.104, V16: 0.863, V17: 0.197, V18: -1.625, V19: 0.653, V20: 0.291, V21: 0.042, V22: 0.001, V23: -0.124, V24: -0.085, V25: 0.220, V26: -0.429, V27: 0.071, V28: 0.111, Amount: 19.800.
7,895
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.019, V2: 0.573, V3: 0.806, V4: -0.906, V5: 0.217, V6: 0.644, V7: -0.171, V8: 0.804, V9: -0.013, V10: -0.733, V11: -0.179, V12: 0.551, V13: 0.129, V14: 0.118, V15: -0.652, V16: 0.693, V17: -0.803, V18: 0.864, V19: 0.111, V20: 0.105, V21: 0.296, V22: 0.804, V23: -0.240, V24: 0.093, V25: 0.016, V26: 0.623, V27: 0.205, V28: 0.094, Amount: 34.300.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.019, V2: 0.573, V3: 0.806, V4: -0.906, V5: 0.217, V6: 0.644, V7: -0.171, V8: 0.804, V9: -0.013, V10: -0.733, V11: -0.179, V12: 0.551, V13: 0.129, V14: 0.118, V15: -0.652, V16: 0.693, V17: -0.803, V18: 0.864, V19: 0.111, V20: 0.105, V21: 0.296, V22: 0.804, V23: -0.240, V24: 0.093, V25: 0.016, V26: 0.623, V27: 0.205, V28: 0.094, Amount: 34.300.
7,896
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.010, V2: 1.158, V3: 1.569, V4: 0.811, V5: 0.006, V6: 0.275, V7: 0.399, V8: 0.559, V9: 0.059, V10: -0.831, V11: 1.886, V12: -1.337, V13: 1.887, V14: 1.611, V15: -2.799, V16: 0.418, V17: 0.496, V18: -0.579, V19: -1.511, V20: -0.247, V21: -0.124, V22: -0.259, V23: 0.168, V24: 0.204, V25: -0.521, V26: 0.535, V27: -0.112, V28: 0.060, Amount: 54.710.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.010, V2: 1.158, V3: 1.569, V4: 0.811, V5: 0.006, V6: 0.275, V7: 0.399, V8: 0.559, V9: 0.059, V10: -0.831, V11: 1.886, V12: -1.337, V13: 1.887, V14: 1.611, V15: -2.799, V16: 0.418, V17: 0.496, V18: -0.579, V19: -1.511, V20: -0.247, V21: -0.124, V22: -0.259, V23: 0.168, V24: 0.204, V25: -0.521, V26: 0.535, V27: -0.112, V28: 0.060, Amount: 54.710.
7,897
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.158, V2: -0.011, V3: 1.028, V4: 0.674, V5: -0.852, V6: -0.454, V7: -0.444, V8: 0.080, V9: 0.428, V10: -0.114, V11: 0.113, V12: 0.156, V13: -0.388, V14: 0.200, V15: 1.593, V16: 0.210, V17: -0.119, V18: -0.626, V19: -0.802, V20: -0.160, V21: -0.043, V22: -0.111, V23: 0.169, V24: 0.406, V25: 0.028, V26: 0.224, V27: 0.007, V28: 0.025, Amount: 5.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.158, V2: -0.011, V3: 1.028, V4: 0.674, V5: -0.852, V6: -0.454, V7: -0.444, V8: 0.080, V9: 0.428, V10: -0.114, V11: 0.113, V12: 0.156, V13: -0.388, V14: 0.200, V15: 1.593, V16: 0.210, V17: -0.119, V18: -0.626, V19: -0.802, V20: -0.160, V21: -0.043, V22: -0.111, V23: 0.169, V24: 0.406, V25: 0.028, V26: 0.224, V27: 0.007, V28: 0.025, Amount: 5.990.
7,898
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.251, V2: -1.315, V3: 0.423, V4: -1.341, V5: 0.670, V6: -0.631, V7: -0.753, V8: 0.690, V9: -1.277, V10: 0.193, V11: 1.147, V12: -0.011, V13: -0.823, V14: 0.378, V15: -0.963, V16: 0.483, V17: 0.872, V18: -1.855, V19: -0.220, V20: 0.070, V21: 0.405, V22: 0.857, V23: -0.415, V24: -0.217, V25: -0.094, V26: -0.238, V27: 0.227, V28: -0.095, Amount: 43.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.251, V2: -1.315, V3: 0.423, V4: -1.341, V5: 0.670, V6: -0.631, V7: -0.753, V8: 0.690, V9: -1.277, V10: 0.193, V11: 1.147, V12: -0.011, V13: -0.823, V14: 0.378, V15: -0.963, V16: 0.483, V17: 0.872, V18: -1.855, V19: -0.220, V20: 0.070, V21: 0.405, V22: 0.857, V23: -0.415, V24: -0.217, V25: -0.094, V26: -0.238, V27: 0.227, V28: -0.095, Amount: 43.000.
7,899
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.209, V2: -0.283, V3: -1.742, V4: -0.639, V5: -0.171, V6: -1.568, V7: -0.014, V8: -0.523, V9: -0.772, V10: 0.245, V11: -0.051, V12: 0.198, V13: 1.615, V14: -1.581, V15: -0.370, V16: 0.939, V17: 1.256, V18: -1.536, V19: 0.627, V20: 0.087, V21: -0.021, V22: 0.071, V23: 0.154, V24: -0.005, V25: 0.041, V26: -0.287, V27: -0.015, V28: -0.032, Amount: 13.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.209, V2: -0.283, V3: -1.742, V4: -0.639, V5: -0.171, V6: -1.568, V7: -0.014, V8: -0.523, V9: -0.772, V10: 0.245, V11: -0.051, V12: 0.198, V13: 1.615, V14: -1.581, V15: -0.370, V16: 0.939, V17: 1.256, V18: -1.536, V19: 0.627, V20: 0.087, V21: -0.021, V22: 0.071, V23: 0.154, V24: -0.005, V25: 0.041, V26: -0.287, V27: -0.015, V28: -0.032, Amount: 13.500.