Datasets:

id
int64
0
7.97k
query
stringlengths
1.29k
1.31k
answer
stringclasses
2 values
choices
sequence
gold
int64
0
1
text
stringlengths
374
399
7,700
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.392, V2: 0.742, V3: -0.138, V4: -0.860, V5: 1.242, V6: -0.582, V7: 1.214, V8: -0.462, V9: 0.292, V10: 0.207, V11: -1.538, V12: 0.304, V13: 1.295, V14: -0.499, V15: -0.370, V16: 0.065, V17: -0.982, V18: -0.595, V19: 0.310, V20: 0.134, V21: -0.427, V22: -0.639, V23: 0.130, V24: -0.985, V25: -0.237, V26: 0.176, V27: 0.126, V28: -0.108, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.392, V2: 0.742, V3: -0.138, V4: -0.860, V5: 1.242, V6: -0.582, V7: 1.214, V8: -0.462, V9: 0.292, V10: 0.207, V11: -1.538, V12: 0.304, V13: 1.295, V14: -0.499, V15: -0.370, V16: 0.065, V17: -0.982, V18: -0.595, V19: 0.310, V20: 0.134, V21: -0.427, V22: -0.639, V23: 0.130, V24: -0.985, V25: -0.237, V26: 0.176, V27: 0.126, V28: -0.108, Amount: 9.990.
7,701
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.104, V2: 0.103, V3: 0.330, V4: 0.981, V5: -0.197, V6: -0.278, V7: 0.043, V8: -0.068, V9: -0.227, V10: 0.124, V11: 1.103, V12: 1.204, V13: 0.872, V14: 0.283, V15: 0.243, V16: 0.405, V17: -0.895, V18: 0.592, V19: -0.099, V20: 0.051, V21: 0.238, V22: 0.644, V23: -0.272, V24: 0.061, V25: 0.743, V26: -0.215, V27: 0.017, V28: 0.021, Amount: 60.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.104, V2: 0.103, V3: 0.330, V4: 0.981, V5: -0.197, V6: -0.278, V7: 0.043, V8: -0.068, V9: -0.227, V10: 0.124, V11: 1.103, V12: 1.204, V13: 0.872, V14: 0.283, V15: 0.243, V16: 0.405, V17: -0.895, V18: 0.592, V19: -0.099, V20: 0.051, V21: 0.238, V22: 0.644, V23: -0.272, V24: 0.061, V25: 0.743, V26: -0.215, V27: 0.017, V28: 0.021, Amount: 60.220.
7,702
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.603, V2: 0.183, V3: 0.966, V4: -2.178, V5: -0.317, V6: -0.875, V7: 0.515, V8: -0.654, V9: -2.486, V10: 1.739, V11: -0.695, V12: -1.647, V13: 0.092, V14: -0.382, V15: 0.637, V16: -1.321, V17: 0.766, V18: -0.237, V19: 1.026, V20: -0.145, V21: -0.376, V22: -0.475, V23: -0.362, V24: -0.119, V25: 0.370, V26: -0.121, V27: -0.987, V28: -0.671, Amount: 9.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.603, V2: 0.183, V3: 0.966, V4: -2.178, V5: -0.317, V6: -0.875, V7: 0.515, V8: -0.654, V9: -2.486, V10: 1.739, V11: -0.695, V12: -1.647, V13: 0.092, V14: -0.382, V15: 0.637, V16: -1.321, V17: 0.766, V18: -0.237, V19: 1.026, V20: -0.145, V21: -0.376, V22: -0.475, V23: -0.362, V24: -0.119, V25: 0.370, V26: -0.121, V27: -0.987, V28: -0.671, Amount: 9.000.
7,703
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.092, V2: -0.415, V3: 0.790, V4: -2.715, V5: -1.322, V6: 0.516, V7: -0.627, V8: -1.699, V9: -1.553, V10: 1.306, V11: 0.224, V12: -0.762, V13: -0.275, V14: -0.587, V15: -0.929, V16: 0.027, V17: -0.033, V18: 0.575, V19: 0.002, V20: -0.742, V21: 1.138, V22: -1.009, V23: 0.362, V24: -0.581, V25: -0.856, V26: -0.558, V27: 0.078, V28: -0.198, Amount: 99.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.092, V2: -0.415, V3: 0.790, V4: -2.715, V5: -1.322, V6: 0.516, V7: -0.627, V8: -1.699, V9: -1.553, V10: 1.306, V11: 0.224, V12: -0.762, V13: -0.275, V14: -0.587, V15: -0.929, V16: 0.027, V17: -0.033, V18: 0.575, V19: 0.002, V20: -0.742, V21: 1.138, V22: -1.009, V23: 0.362, V24: -0.581, V25: -0.856, V26: -0.558, V27: 0.078, V28: -0.198, Amount: 99.900.
7,704
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.143, V2: 1.072, V3: 2.053, V4: -1.117, V5: -0.177, V6: -0.477, V7: 0.873, V8: -0.611, V9: 2.437, V10: 2.257, V11: 0.270, V12: 0.017, V13: -0.409, V14: -1.795, V15: -0.024, V16: -0.752, V17: -0.287, V18: -1.073, V19: -1.122, V20: 1.060, V21: -0.314, V22: 0.683, V23: -0.198, V24: 0.684, V25: -0.031, V26: 0.905, V27: 0.297, V28: 0.008, Amount: 9.680.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.143, V2: 1.072, V3: 2.053, V4: -1.117, V5: -0.177, V6: -0.477, V7: 0.873, V8: -0.611, V9: 2.437, V10: 2.257, V11: 0.270, V12: 0.017, V13: -0.409, V14: -1.795, V15: -0.024, V16: -0.752, V17: -0.287, V18: -1.073, V19: -1.122, V20: 1.060, V21: -0.314, V22: 0.683, V23: -0.198, V24: 0.684, V25: -0.031, V26: 0.905, V27: 0.297, V28: 0.008, Amount: 9.680.
7,705
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.170, V2: -0.411, V3: 0.747, V4: -0.068, V5: -0.751, V6: -0.036, V7: -0.524, V8: -0.016, V9: 0.823, V10: -0.399, V11: -1.053, V12: 0.754, V13: 1.529, V14: -0.616, V15: 0.674, V16: 0.550, V17: -0.606, V18: -0.122, V19: 0.367, V20: 0.173, V21: -0.066, V22: -0.126, V23: -0.112, V24: -0.345, V25: 0.219, V26: 1.041, V27: -0.042, V28: 0.022, Amount: 68.040.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.170, V2: -0.411, V3: 0.747, V4: -0.068, V5: -0.751, V6: -0.036, V7: -0.524, V8: -0.016, V9: 0.823, V10: -0.399, V11: -1.053, V12: 0.754, V13: 1.529, V14: -0.616, V15: 0.674, V16: 0.550, V17: -0.606, V18: -0.122, V19: 0.367, V20: 0.173, V21: -0.066, V22: -0.126, V23: -0.112, V24: -0.345, V25: 0.219, V26: 1.041, V27: -0.042, V28: 0.022, Amount: 68.040.
7,706
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.203, V2: 1.094, V3: 2.049, V4: 2.841, V5: 0.067, V6: 0.721, V7: 0.157, V8: 0.281, V9: -1.205, V10: 0.715, V11: 0.499, V12: 0.402, V13: -0.033, V14: 0.041, V15: -0.563, V16: -0.073, V17: -0.039, V18: 0.290, V19: 1.611, V20: 0.108, V21: -0.205, V22: -0.473, V23: 0.022, V24: -0.033, V25: -0.735, V26: -0.113, V27: 0.193, V28: 0.162, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.203, V2: 1.094, V3: 2.049, V4: 2.841, V5: 0.067, V6: 0.721, V7: 0.157, V8: 0.281, V9: -1.205, V10: 0.715, V11: 0.499, V12: 0.402, V13: -0.033, V14: 0.041, V15: -0.563, V16: -0.073, V17: -0.039, V18: 0.290, V19: 1.611, V20: 0.108, V21: -0.205, V22: -0.473, V23: 0.022, V24: -0.033, V25: -0.735, V26: -0.113, V27: 0.193, V28: 0.162, Amount: 0.000.
7,707
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.874, V2: 0.524, V3: -1.447, V4: -1.580, V5: 0.020, V6: 4.566, V7: 0.477, V8: 0.193, V9: -1.604, V10: -0.299, V11: -0.104, V12: -1.034, V13: 0.124, V14: -0.984, V15: 0.557, V16: 1.224, V17: 1.334, V18: -0.448, V19: 2.122, V20: -0.075, V21: 0.703, V22: -0.410, V23: 0.094, V24: 0.947, V25: -0.122, V26: -0.207, V27: 0.179, V28: -0.025, Amount: 364.100.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.874, V2: 0.524, V3: -1.447, V4: -1.580, V5: 0.020, V6: 4.566, V7: 0.477, V8: 0.193, V9: -1.604, V10: -0.299, V11: -0.104, V12: -1.034, V13: 0.124, V14: -0.984, V15: 0.557, V16: 1.224, V17: 1.334, V18: -0.448, V19: 2.122, V20: -0.075, V21: 0.703, V22: -0.410, V23: 0.094, V24: 0.947, V25: -0.122, V26: -0.207, V27: 0.179, V28: -0.025, Amount: 364.100.
7,708
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.093, V2: -1.046, V3: -0.740, V4: -0.738, V5: -1.106, V6: -0.942, V7: -0.751, V8: -0.185, V9: 0.044, V10: 0.745, V11: -0.837, V12: -0.765, V13: -0.451, V14: -0.212, V15: 0.142, V16: 0.975, V17: 0.308, V18: -1.404, V19: 0.494, V20: -0.005, V21: 0.225, V22: 0.608, V23: 0.154, V24: -0.004, V25: -0.191, V26: -0.178, V27: -0.012, V28: -0.047, Amount: 52.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.093, V2: -1.046, V3: -0.740, V4: -0.738, V5: -1.106, V6: -0.942, V7: -0.751, V8: -0.185, V9: 0.044, V10: 0.745, V11: -0.837, V12: -0.765, V13: -0.451, V14: -0.212, V15: 0.142, V16: 0.975, V17: 0.308, V18: -1.404, V19: 0.494, V20: -0.005, V21: 0.225, V22: 0.608, V23: 0.154, V24: -0.004, V25: -0.191, V26: -0.178, V27: -0.012, V28: -0.047, Amount: 52.000.
7,709
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.201, V2: 0.860, V3: -1.414, V4: -1.149, V5: 0.680, V6: -0.178, V7: 0.525, V8: 0.615, V9: 0.021, V10: -0.286, V11: -0.091, V12: 0.697, V13: -0.181, V14: 0.770, V15: -0.853, V16: 0.147, V17: -0.618, V18: 0.151, V19: 0.463, V20: -0.067, V21: -0.140, V22: -0.345, V23: -0.205, V24: -0.107, V25: 0.158, V26: -0.148, V27: -0.168, V28: -0.404, Amount: 49.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.201, V2: 0.860, V3: -1.414, V4: -1.149, V5: 0.680, V6: -0.178, V7: 0.525, V8: 0.615, V9: 0.021, V10: -0.286, V11: -0.091, V12: 0.697, V13: -0.181, V14: 0.770, V15: -0.853, V16: 0.147, V17: -0.618, V18: 0.151, V19: 0.463, V20: -0.067, V21: -0.140, V22: -0.345, V23: -0.205, V24: -0.107, V25: 0.158, V26: -0.148, V27: -0.168, V28: -0.404, Amount: 49.000.
7,710
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -8.869, V2: 6.932, V3: -5.224, V4: -1.327, V5: -4.593, V6: 1.323, V7: -7.310, V8: -2.175, V9: 0.081, V10: -0.952, V11: -1.556, V12: 3.176, V13: 0.183, V14: 3.872, V15: -0.809, V16: 2.006, V17: 1.791, V18: 1.010, V19: -0.068, V20: -2.714, V21: 8.087, V22: -3.311, V23: 1.887, V24: -0.002, V25: 0.399, V26: -0.287, V27: -1.964, V28: -0.495, Amount: 7.700.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -8.869, V2: 6.932, V3: -5.224, V4: -1.327, V5: -4.593, V6: 1.323, V7: -7.310, V8: -2.175, V9: 0.081, V10: -0.952, V11: -1.556, V12: 3.176, V13: 0.183, V14: 3.872, V15: -0.809, V16: 2.006, V17: 1.791, V18: 1.010, V19: -0.068, V20: -2.714, V21: 8.087, V22: -3.311, V23: 1.887, V24: -0.002, V25: 0.399, V26: -0.287, V27: -1.964, V28: -0.495, Amount: 7.700.
7,711
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.471, V2: -1.094, V3: 0.586, V4: -1.428, V5: -1.484, V6: -0.450, V7: -1.120, V8: -0.198, V9: -1.783, V10: 1.369, V11: -0.747, V12: -0.310, V13: 2.141, V14: -0.812, V15: 0.724, V16: -0.057, V17: 0.096, V18: 0.311, V19: -0.260, V20: -0.138, V21: -0.058, V22: 0.242, V23: -0.114, V24: -0.107, V25: 0.449, V26: -0.079, V27: 0.054, V28: 0.031, Amount: 46.800.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.471, V2: -1.094, V3: 0.586, V4: -1.428, V5: -1.484, V6: -0.450, V7: -1.120, V8: -0.198, V9: -1.783, V10: 1.369, V11: -0.747, V12: -0.310, V13: 2.141, V14: -0.812, V15: 0.724, V16: -0.057, V17: 0.096, V18: 0.311, V19: -0.260, V20: -0.138, V21: -0.058, V22: 0.242, V23: -0.114, V24: -0.107, V25: 0.449, V26: -0.079, V27: 0.054, V28: 0.031, Amount: 46.800.
7,712
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.159, V2: -2.338, V3: 0.932, V4: 2.092, V5: -0.175, V6: -1.022, V7: 0.060, V8: 0.552, V9: -0.436, V10: -0.441, V11: -0.832, V12: -0.418, V13: -0.470, V14: 0.723, V15: 1.733, V16: 0.180, V17: 0.006, V18: 0.884, V19: 0.346, V20: 1.610, V21: 0.687, V22: 0.446, V23: 0.709, V24: 0.344, V25: 0.124, V26: -0.158, V27: 0.184, V28: -0.218, Amount: 397.630.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.159, V2: -2.338, V3: 0.932, V4: 2.092, V5: -0.175, V6: -1.022, V7: 0.060, V8: 0.552, V9: -0.436, V10: -0.441, V11: -0.832, V12: -0.418, V13: -0.470, V14: 0.723, V15: 1.733, V16: 0.180, V17: 0.006, V18: 0.884, V19: 0.346, V20: 1.610, V21: 0.687, V22: 0.446, V23: 0.709, V24: 0.344, V25: 0.124, V26: -0.158, V27: 0.184, V28: -0.218, Amount: 397.630.
7,713
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.440, V2: -1.603, V3: 0.535, V4: 0.326, V5: 0.135, V6: -0.554, V7: -0.062, V8: 0.624, V9: 0.353, V10: -1.017, V11: -1.263, V12: -0.265, V13: -0.448, V14: 0.528, V15: 1.398, V16: 0.035, V17: -0.215, V18: 0.972, V19: 0.390, V20: 1.106, V21: 0.584, V22: 0.640, V23: 0.387, V24: 0.706, V25: 0.164, V26: -0.450, V27: 0.242, V28: -0.104, Amount: 275.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.440, V2: -1.603, V3: 0.535, V4: 0.326, V5: 0.135, V6: -0.554, V7: -0.062, V8: 0.624, V9: 0.353, V10: -1.017, V11: -1.263, V12: -0.265, V13: -0.448, V14: 0.528, V15: 1.398, V16: 0.035, V17: -0.215, V18: 0.972, V19: 0.390, V20: 1.106, V21: 0.584, V22: 0.640, V23: 0.387, V24: 0.706, V25: 0.164, V26: -0.450, V27: 0.242, V28: -0.104, Amount: 275.000.
7,714
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.136, V2: -0.815, V3: -1.412, V4: -0.260, V5: -0.337, V6: -0.361, V7: -0.389, V8: -0.185, V9: -0.179, V10: 0.828, V11: -1.540, V12: -0.151, V13: -0.064, V14: -0.054, V15: -0.677, V16: -1.983, V17: 0.192, V18: 0.847, V19: -0.617, V20: -0.583, V21: -0.239, V22: 0.000, V23: 0.082, V24: 0.557, V25: 0.108, V26: 0.708, V27: -0.051, V28: -0.059, Amount: 28.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.136, V2: -0.815, V3: -1.412, V4: -0.260, V5: -0.337, V6: -0.361, V7: -0.389, V8: -0.185, V9: -0.179, V10: 0.828, V11: -1.540, V12: -0.151, V13: -0.064, V14: -0.054, V15: -0.677, V16: -1.983, V17: 0.192, V18: 0.847, V19: -0.617, V20: -0.583, V21: -0.239, V22: 0.000, V23: 0.082, V24: 0.557, V25: 0.108, V26: 0.708, V27: -0.051, V28: -0.059, Amount: 28.750.
7,715
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.021, V2: 0.254, V3: -1.836, V4: 1.283, V5: 0.467, V6: -1.517, V7: 0.815, V8: -0.507, V9: -0.051, V10: 0.384, V11: -0.866, V12: -0.196, V13: -0.801, V14: 0.954, V15: 0.258, V16: -0.381, V17: -0.395, V18: -0.337, V19: -0.391, V20: -0.280, V21: 0.129, V22: 0.400, V23: -0.027, V24: 0.029, V25: 0.440, V26: -0.487, V27: -0.041, V28: -0.060, Amount: 29.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.021, V2: 0.254, V3: -1.836, V4: 1.283, V5: 0.467, V6: -1.517, V7: 0.815, V8: -0.507, V9: -0.051, V10: 0.384, V11: -0.866, V12: -0.196, V13: -0.801, V14: 0.954, V15: 0.258, V16: -0.381, V17: -0.395, V18: -0.337, V19: -0.391, V20: -0.280, V21: 0.129, V22: 0.400, V23: -0.027, V24: 0.029, V25: 0.440, V26: -0.487, V27: -0.041, V28: -0.060, Amount: 29.900.
7,716
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.835, V2: 1.329, V3: 0.988, V4: 1.240, V5: 1.076, V6: -0.443, V7: 1.094, V8: -0.092, V9: -1.552, V10: 0.531, V11: 0.510, V12: -0.138, V13: -0.799, V14: 0.618, V15: -1.059, V16: 0.776, V17: -1.088, V18: 0.256, V19: -0.994, V20: -0.307, V21: 0.138, V22: 0.191, V23: -0.327, V24: -0.026, V25: -0.004, V26: -0.155, V27: -0.176, V28: 0.105, Amount: 6.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.835, V2: 1.329, V3: 0.988, V4: 1.240, V5: 1.076, V6: -0.443, V7: 1.094, V8: -0.092, V9: -1.552, V10: 0.531, V11: 0.510, V12: -0.138, V13: -0.799, V14: 0.618, V15: -1.059, V16: 0.776, V17: -1.088, V18: 0.256, V19: -0.994, V20: -0.307, V21: 0.138, V22: 0.191, V23: -0.327, V24: -0.026, V25: -0.004, V26: -0.155, V27: -0.176, V28: 0.105, Amount: 6.350.
7,717
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.719, V2: -0.851, V3: -0.524, V4: 0.221, V5: -0.043, V6: 1.383, V7: -0.989, V8: 0.426, V9: 2.911, V10: -0.742, V11: 0.437, V12: -2.298, V13: 0.873, V14: 1.478, V15: 0.741, V16: -0.769, V17: 1.164, V18: -0.865, V19: -1.453, V20: -0.212, V21: 0.144, V22: 0.768, V23: 0.204, V24: -0.385, V25: -0.453, V26: 0.148, V27: 0.017, V28: -0.041, Amount: 88.770.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.719, V2: -0.851, V3: -0.524, V4: 0.221, V5: -0.043, V6: 1.383, V7: -0.989, V8: 0.426, V9: 2.911, V10: -0.742, V11: 0.437, V12: -2.298, V13: 0.873, V14: 1.478, V15: 0.741, V16: -0.769, V17: 1.164, V18: -0.865, V19: -1.453, V20: -0.212, V21: 0.144, V22: 0.768, V23: 0.204, V24: -0.385, V25: -0.453, V26: 0.148, V27: 0.017, V28: -0.041, Amount: 88.770.
7,718
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.012, V2: -0.126, V3: -1.979, V4: 0.289, V5: 0.203, V6: -1.737, V7: 0.732, V8: -0.546, V9: 0.148, V10: 0.212, V11: -0.773, V12: -0.319, V13: -0.957, V14: 0.922, V15: 0.385, V16: -0.295, V17: -0.232, V18: -0.591, V19: -0.016, V20: -0.163, V21: 0.099, V22: 0.216, V23: 0.003, V24: 0.093, V25: 0.159, V26: 0.723, V27: -0.141, V28: -0.074, Amount: 62.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.012, V2: -0.126, V3: -1.979, V4: 0.289, V5: 0.203, V6: -1.737, V7: 0.732, V8: -0.546, V9: 0.148, V10: 0.212, V11: -0.773, V12: -0.319, V13: -0.957, V14: 0.922, V15: 0.385, V16: -0.295, V17: -0.232, V18: -0.591, V19: -0.016, V20: -0.163, V21: 0.099, V22: 0.216, V23: 0.003, V24: 0.093, V25: 0.159, V26: 0.723, V27: -0.141, V28: -0.074, Amount: 62.500.
7,719
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.304, V2: 0.235, V3: -0.227, V4: 0.277, V5: 0.277, V6: -0.016, V7: -0.075, V8: 0.053, V9: -0.068, V10: -0.098, V11: 0.392, V12: 0.249, V13: -0.095, V14: -0.076, V15: 0.539, V16: 1.075, V17: -0.702, V18: 0.677, V19: 0.584, V20: -0.057, V21: -0.326, V22: -0.995, V23: -0.038, V24: -1.021, V25: 0.343, V26: 0.159, V27: -0.032, V28: 0.007, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.304, V2: 0.235, V3: -0.227, V4: 0.277, V5: 0.277, V6: -0.016, V7: -0.075, V8: 0.053, V9: -0.068, V10: -0.098, V11: 0.392, V12: 0.249, V13: -0.095, V14: -0.076, V15: 0.539, V16: 1.075, V17: -0.702, V18: 0.677, V19: 0.584, V20: -0.057, V21: -0.326, V22: -0.995, V23: -0.038, V24: -1.021, V25: 0.343, V26: 0.159, V27: -0.032, V28: 0.007, Amount: 1.980.
7,720
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.068, V2: -0.885, V3: 2.147, V4: 0.621, V5: 5.481, V6: -2.394, V7: -7.216, V8: -0.997, V9: 1.780, V10: 0.620, V11: -2.057, V12: 0.565, V13: -0.787, V14: 0.176, V15: 0.232, V16: 0.294, V17: -0.282, V18: -0.571, V19: -1.100, V20: -1.007, V21: 1.436, V22: -2.168, V23: -9.873, V24: -0.855, V25: -1.292, V26: -0.575, V27: 0.712, V28: 0.507, Amount: 9.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.068, V2: -0.885, V3: 2.147, V4: 0.621, V5: 5.481, V6: -2.394, V7: -7.216, V8: -0.997, V9: 1.780, V10: 0.620, V11: -2.057, V12: 0.565, V13: -0.787, V14: 0.176, V15: 0.232, V16: 0.294, V17: -0.282, V18: -0.571, V19: -1.100, V20: -1.007, V21: 1.436, V22: -2.168, V23: -9.873, V24: -0.855, V25: -1.292, V26: -0.575, V27: 0.712, V28: 0.507, Amount: 9.990.
7,721
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.599, V2: 0.328, V3: 2.344, V4: 0.761, V5: 0.174, V6: -0.378, V7: 0.278, V8: -0.117, V9: 0.283, V10: -0.393, V11: -0.864, V12: 0.246, V13: 0.289, V14: -0.632, V15: -0.192, V16: -0.338, V17: -0.290, V18: 0.121, V19: -0.044, V20: 0.108, V21: 0.178, V22: 0.814, V23: -0.246, V24: 0.434, V25: -0.016, V26: -0.318, V27: 0.003, V28: -0.070, Amount: 7.570.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.599, V2: 0.328, V3: 2.344, V4: 0.761, V5: 0.174, V6: -0.378, V7: 0.278, V8: -0.117, V9: 0.283, V10: -0.393, V11: -0.864, V12: 0.246, V13: 0.289, V14: -0.632, V15: -0.192, V16: -0.338, V17: -0.290, V18: 0.121, V19: -0.044, V20: 0.108, V21: 0.178, V22: 0.814, V23: -0.246, V24: 0.434, V25: -0.016, V26: -0.318, V27: 0.003, V28: -0.070, Amount: 7.570.
7,722
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.718, V2: 1.818, V3: 1.401, V4: 4.352, V5: -0.001, V6: 1.182, V7: -0.760, V8: 1.377, V9: -2.053, V10: 1.403, V11: 0.146, V12: 0.056, V13: -0.552, V14: 0.811, V15: -0.330, V16: 0.281, V17: 0.482, V18: 0.364, V19: 1.825, V20: 0.228, V21: -0.362, V22: -1.165, V23: -0.084, V24: 0.687, V25: -0.053, V26: 0.035, V27: 0.280, V28: -0.027, Amount: 0.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.718, V2: 1.818, V3: 1.401, V4: 4.352, V5: -0.001, V6: 1.182, V7: -0.760, V8: 1.377, V9: -2.053, V10: 1.403, V11: 0.146, V12: 0.056, V13: -0.552, V14: 0.811, V15: -0.330, V16: 0.281, V17: 0.482, V18: 0.364, V19: 1.825, V20: 0.228, V21: -0.362, V22: -1.165, V23: -0.084, V24: 0.687, V25: -0.053, V26: 0.035, V27: 0.280, V28: -0.027, Amount: 0.000.
7,723
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.683, V2: -0.755, V3: -0.475, V4: 0.558, V5: -0.816, V6: -0.705, V7: -0.228, V8: -0.216, V9: 1.077, V10: -0.204, V11: -0.619, V12: 0.962, V13: 1.271, V14: -0.192, V15: 0.892, V16: 0.248, V17: -0.726, V18: 0.182, V19: -0.442, V20: 0.178, V21: 0.325, V22: 0.806, V23: -0.012, V24: 0.098, V25: -0.165, V26: -0.268, V27: 0.011, V28: -0.006, Amount: 167.960.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.683, V2: -0.755, V3: -0.475, V4: 0.558, V5: -0.816, V6: -0.705, V7: -0.228, V8: -0.216, V9: 1.077, V10: -0.204, V11: -0.619, V12: 0.962, V13: 1.271, V14: -0.192, V15: 0.892, V16: 0.248, V17: -0.726, V18: 0.182, V19: -0.442, V20: 0.178, V21: 0.325, V22: 0.806, V23: -0.012, V24: 0.098, V25: -0.165, V26: -0.268, V27: 0.011, V28: -0.006, Amount: 167.960.
7,724
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.020, V2: -0.152, V3: 0.336, V4: -1.720, V5: 1.781, V6: 4.306, V7: -0.948, V8: 1.302, V9: 0.727, V10: -0.697, V11: -0.376, V12: -0.008, V13: -0.001, V14: -0.403, V15: 0.900, V16: 0.765, V17: -0.922, V18: 0.351, V19: -0.798, V20: -0.035, V21: 0.286, V22: 0.809, V23: 0.049, V24: 0.745, V25: -0.781, V26: 0.572, V27: 0.094, V28: 0.054, Amount: 14.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.020, V2: -0.152, V3: 0.336, V4: -1.720, V5: 1.781, V6: 4.306, V7: -0.948, V8: 1.302, V9: 0.727, V10: -0.697, V11: -0.376, V12: -0.008, V13: -0.001, V14: -0.403, V15: 0.900, V16: 0.765, V17: -0.922, V18: 0.351, V19: -0.798, V20: -0.035, V21: 0.286, V22: 0.809, V23: 0.049, V24: 0.745, V25: -0.781, V26: 0.572, V27: 0.094, V28: 0.054, Amount: 14.900.
7,725
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.136, V2: 0.138, V3: 0.421, V4: 1.276, V5: -0.133, V6: 0.130, V7: -0.085, V8: 0.168, V9: 0.122, V10: 0.065, V11: 1.058, V12: 0.901, V13: -0.810, V14: 0.379, V15: -0.730, V16: -0.499, V17: 0.046, V18: -0.411, V19: -0.071, V20: -0.232, V21: -0.062, V22: 0.011, V23: -0.061, V24: 0.022, V25: 0.616, V26: -0.327, V27: 0.034, V28: 0.003, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.136, V2: 0.138, V3: 0.421, V4: 1.276, V5: -0.133, V6: 0.130, V7: -0.085, V8: 0.168, V9: 0.122, V10: 0.065, V11: 1.058, V12: 0.901, V13: -0.810, V14: 0.379, V15: -0.730, V16: -0.499, V17: 0.046, V18: -0.411, V19: -0.071, V20: -0.232, V21: -0.062, V22: 0.011, V23: -0.061, V24: 0.022, V25: 0.616, V26: -0.327, V27: 0.034, V28: 0.003, Amount: 1.000.
7,726
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.235, V2: -0.548, V3: 0.263, V4: -1.623, V5: 0.570, V6: 0.523, V7: 1.550, V8: 0.091, V9: 1.200, V10: -1.619, V11: 0.512, V12: -3.065, V13: -0.204, V14: 1.930, V15: -2.016, V16: 0.609, V17: -0.222, V18: 0.312, V19: -1.043, V20: 0.334, V21: 0.040, V22: -0.295, V23: 0.404, V24: -1.378, V25: 0.105, V26: 0.804, V27: -0.157, V28: 0.096, Amount: 301.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.235, V2: -0.548, V3: 0.263, V4: -1.623, V5: 0.570, V6: 0.523, V7: 1.550, V8: 0.091, V9: 1.200, V10: -1.619, V11: 0.512, V12: -3.065, V13: -0.204, V14: 1.930, V15: -2.016, V16: 0.609, V17: -0.222, V18: 0.312, V19: -1.043, V20: 0.334, V21: 0.040, V22: -0.295, V23: 0.404, V24: -1.378, V25: 0.105, V26: 0.804, V27: -0.157, V28: 0.096, Amount: 301.000.
7,727
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.311, V2: -1.343, V3: 0.231, V4: -2.535, V5: -1.875, V6: -1.327, V7: -0.805, V8: -0.090, V9: 1.547, V10: -0.744, V11: -0.956, V12: -0.700, V13: -2.376, V14: 0.425, V15: 1.578, V16: -2.474, V17: 0.516, V18: 1.760, V19: 0.429, V20: -0.569, V21: -0.354, V22: -0.500, V23: -0.063, V24: 0.321, V25: 0.514, V26: -0.730, V27: 0.082, V28: 0.034, Amount: 59.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.311, V2: -1.343, V3: 0.231, V4: -2.535, V5: -1.875, V6: -1.327, V7: -0.805, V8: -0.090, V9: 1.547, V10: -0.744, V11: -0.956, V12: -0.700, V13: -2.376, V14: 0.425, V15: 1.578, V16: -2.474, V17: 0.516, V18: 1.760, V19: 0.429, V20: -0.569, V21: -0.354, V22: -0.500, V23: -0.063, V24: 0.321, V25: 0.514, V26: -0.730, V27: 0.082, V28: 0.034, Amount: 59.990.
7,728
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.214, V2: -0.892, V3: 0.167, V4: -0.641, V5: -0.979, V6: -0.428, V7: -0.522, V8: -0.016, V9: -0.734, V10: 0.701, V11: 0.795, V12: -0.312, V13: -0.811, V14: 0.059, V15: -0.649, V16: 1.078, V17: 0.224, V18: -0.961, V19: 1.211, V20: 0.199, V21: 0.083, V22: -0.013, V23: -0.149, V24: 0.012, V25: 0.492, V26: -0.257, V27: -0.020, V28: 0.013, Amount: 98.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.214, V2: -0.892, V3: 0.167, V4: -0.641, V5: -0.979, V6: -0.428, V7: -0.522, V8: -0.016, V9: -0.734, V10: 0.701, V11: 0.795, V12: -0.312, V13: -0.811, V14: 0.059, V15: -0.649, V16: 1.078, V17: 0.224, V18: -0.961, V19: 1.211, V20: 0.199, V21: 0.083, V22: -0.013, V23: -0.149, V24: 0.012, V25: 0.492, V26: -0.257, V27: -0.020, V28: 0.013, Amount: 98.950.
7,729
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.247, V2: 0.510, V3: 1.252, V4: 0.446, V5: -0.484, V6: -0.028, V7: -0.442, V8: -0.760, V9: -0.516, V10: 0.153, V11: 1.123, V12: 0.147, V13: -0.637, V14: 0.689, V15: 1.379, V16: -0.058, V17: 0.056, V18: 0.595, V19: 1.943, V20: 0.039, V21: 0.809, V22: -0.150, V23: -0.460, V24: 0.098, V25: 1.126, V26: 1.522, V27: 0.027, V28: 0.127, Amount: 2.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.247, V2: 0.510, V3: 1.252, V4: 0.446, V5: -0.484, V6: -0.028, V7: -0.442, V8: -0.760, V9: -0.516, V10: 0.153, V11: 1.123, V12: 0.147, V13: -0.637, V14: 0.689, V15: 1.379, V16: -0.058, V17: 0.056, V18: 0.595, V19: 1.943, V20: 0.039, V21: 0.809, V22: -0.150, V23: -0.460, V24: 0.098, V25: 1.126, V26: 1.522, V27: 0.027, V28: 0.127, Amount: 2.920.
7,730
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.788, V2: 0.316, V3: 2.438, V4: -1.987, V5: -0.450, V6: -0.312, V7: 0.297, V8: 0.119, V9: 1.654, V10: -1.459, V11: -0.612, V12: -0.463, V13: -1.876, V14: -0.187, V15: 1.147, V16: -0.592, V17: -0.101, V18: -0.006, V19: -0.334, V20: -0.047, V21: -0.055, V22: 0.239, V23: -0.352, V24: 0.040, V25: 0.417, V26: -0.750, V27: 0.196, V28: -0.092, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.788, V2: 0.316, V3: 2.438, V4: -1.987, V5: -0.450, V6: -0.312, V7: 0.297, V8: 0.119, V9: 1.654, V10: -1.459, V11: -0.612, V12: -0.463, V13: -1.876, V14: -0.187, V15: 1.147, V16: -0.592, V17: -0.101, V18: -0.006, V19: -0.334, V20: -0.047, V21: -0.055, V22: 0.239, V23: -0.352, V24: 0.040, V25: 0.417, V26: -0.750, V27: 0.196, V28: -0.092, Amount: 1.000.
7,731
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.046, V2: -0.141, V3: 0.055, V4: 1.242, V5: -0.090, V6: 0.082, V7: 0.095, V8: 0.056, V9: 0.180, V10: 0.070, V11: 0.205, V12: 0.529, V13: -0.775, V14: 0.355, V15: -0.907, V16: 0.011, V17: -0.472, V18: 0.296, V19: 0.517, V20: 0.005, V21: -0.079, V22: -0.289, V23: -0.257, V24: -0.351, V25: 0.742, V26: -0.324, V27: -0.002, V28: 0.016, Amount: 94.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.046, V2: -0.141, V3: 0.055, V4: 1.242, V5: -0.090, V6: 0.082, V7: 0.095, V8: 0.056, V9: 0.180, V10: 0.070, V11: 0.205, V12: 0.529, V13: -0.775, V14: 0.355, V15: -0.907, V16: 0.011, V17: -0.472, V18: 0.296, V19: 0.517, V20: 0.005, V21: -0.079, V22: -0.289, V23: -0.257, V24: -0.351, V25: 0.742, V26: -0.324, V27: -0.002, V28: 0.016, Amount: 94.950.
7,732
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.030, V2: 0.152, V3: -1.642, V4: 1.386, V5: 0.370, V6: -1.133, V7: 0.577, V8: -0.359, V9: 0.358, V10: 0.287, V11: -1.205, V12: -0.230, V13: -1.248, V14: 0.729, V15: -0.404, V16: -0.672, V17: -0.095, V18: -0.515, V19: -0.191, V20: -0.360, V21: 0.035, V22: 0.279, V23: 0.000, V24: -0.105, V25: 0.433, V26: -0.482, V27: -0.022, V28: -0.065, Amount: 10.220.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.030, V2: 0.152, V3: -1.642, V4: 1.386, V5: 0.370, V6: -1.133, V7: 0.577, V8: -0.359, V9: 0.358, V10: 0.287, V11: -1.205, V12: -0.230, V13: -1.248, V14: 0.729, V15: -0.404, V16: -0.672, V17: -0.095, V18: -0.515, V19: -0.191, V20: -0.360, V21: 0.035, V22: 0.279, V23: 0.000, V24: -0.105, V25: 0.433, V26: -0.482, V27: -0.022, V28: -0.065, Amount: 10.220.
7,733
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.749, V2: 0.944, V3: 1.114, V4: -1.215, V5: -0.360, V6: -0.673, V7: 0.120, V8: 0.499, V9: -0.130, V10: -0.938, V11: -0.314, V12: 0.458, V13: 0.455, V14: 0.180, V15: 0.684, V16: 0.460, V17: -0.270, V18: -0.835, V19: -1.127, V20: -0.108, V21: -0.033, V22: -0.122, V23: 0.052, V24: 0.125, V25: -0.290, V26: 0.754, V27: 0.071, V28: 0.001, Amount: 3.030.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.749, V2: 0.944, V3: 1.114, V4: -1.215, V5: -0.360, V6: -0.673, V7: 0.120, V8: 0.499, V9: -0.130, V10: -0.938, V11: -0.314, V12: 0.458, V13: 0.455, V14: 0.180, V15: 0.684, V16: 0.460, V17: -0.270, V18: -0.835, V19: -1.127, V20: -0.108, V21: -0.033, V22: -0.122, V23: 0.052, V24: 0.125, V25: -0.290, V26: 0.754, V27: 0.071, V28: 0.001, Amount: 3.030.
7,734
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.017, V2: -0.847, V3: -1.226, V4: -0.728, V5: -0.616, V6: -0.297, V7: -0.998, V8: 0.080, V9: -0.219, V10: 0.217, V11: 1.421, V12: -0.072, V13: 0.126, V14: -1.912, V15: -0.278, V16: 1.825, V17: 1.168, V18: -0.014, V19: 0.407, V20: 0.148, V21: 0.317, V22: 0.851, V23: 0.102, V24: 0.608, V25: -0.194, V26: -0.142, V27: 0.016, V28: -0.008, Amount: 59.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.017, V2: -0.847, V3: -1.226, V4: -0.728, V5: -0.616, V6: -0.297, V7: -0.998, V8: 0.080, V9: -0.219, V10: 0.217, V11: 1.421, V12: -0.072, V13: 0.126, V14: -1.912, V15: -0.278, V16: 1.825, V17: 1.168, V18: -0.014, V19: 0.407, V20: 0.148, V21: 0.317, V22: 0.851, V23: 0.102, V24: 0.608, V25: -0.194, V26: -0.142, V27: 0.016, V28: -0.008, Amount: 59.000.
7,735
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.417, V2: 1.113, V3: 0.966, V4: -0.211, V5: 0.410, V6: -0.501, V7: 0.834, V8: -0.168, V9: 0.170, V10: 0.039, V11: -1.041, V12: -1.042, V13: -0.895, V14: -0.534, V15: 1.126, V16: 0.579, V17: -0.345, V18: 0.231, V19: 0.207, V20: 0.264, V21: -0.416, V22: -0.931, V23: -0.123, V24: -0.542, V25: -0.060, V26: 0.104, V27: 0.184, V28: -0.079, Amount: 8.970.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.417, V2: 1.113, V3: 0.966, V4: -0.211, V5: 0.410, V6: -0.501, V7: 0.834, V8: -0.168, V9: 0.170, V10: 0.039, V11: -1.041, V12: -1.042, V13: -0.895, V14: -0.534, V15: 1.126, V16: 0.579, V17: -0.345, V18: 0.231, V19: 0.207, V20: 0.264, V21: -0.416, V22: -0.931, V23: -0.123, V24: -0.542, V25: -0.060, V26: 0.104, V27: 0.184, V28: -0.079, Amount: 8.970.
7,736
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.559, V2: -0.402, V3: 0.350, V4: -2.142, V5: 0.146, V6: 0.068, V7: 0.884, V8: -0.201, V9: -0.694, V10: -0.886, V11: -1.190, V12: -1.651, V13: -0.014, V14: -2.443, V15: -0.234, V16: 2.030, V17: 0.717, V18: -0.022, V19: -0.192, V20: 0.597, V21: 0.316, V22: 0.667, V23: 0.048, V24: -0.048, V25: 0.144, V26: -0.210, V27: -0.103, V28: -0.039, Amount: 199.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.559, V2: -0.402, V3: 0.350, V4: -2.142, V5: 0.146, V6: 0.068, V7: 0.884, V8: -0.201, V9: -0.694, V10: -0.886, V11: -1.190, V12: -1.651, V13: -0.014, V14: -2.443, V15: -0.234, V16: 2.030, V17: 0.717, V18: -0.022, V19: -0.192, V20: 0.597, V21: 0.316, V22: 0.667, V23: 0.048, V24: -0.048, V25: 0.144, V26: -0.210, V27: -0.103, V28: -0.039, Amount: 199.000.
7,737
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.060, V2: -0.104, V3: -0.191, V4: 0.429, V5: -0.135, V6: -0.726, V7: 0.407, V8: -0.145, V9: -0.334, V10: 0.085, V11: 1.080, V12: 0.506, V13: -0.657, V14: 0.817, V15: 0.172, V16: 0.366, V17: -0.579, V18: -0.173, V19: 0.494, V20: 0.089, V21: -0.298, V22: -1.201, V23: 0.008, V24: -0.028, V25: 0.238, V26: 0.133, V27: -0.092, V28: 0.013, Amount: 111.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.060, V2: -0.104, V3: -0.191, V4: 0.429, V5: -0.135, V6: -0.726, V7: 0.407, V8: -0.145, V9: -0.334, V10: 0.085, V11: 1.080, V12: 0.506, V13: -0.657, V14: 0.817, V15: 0.172, V16: 0.366, V17: -0.579, V18: -0.173, V19: 0.494, V20: 0.089, V21: -0.298, V22: -1.201, V23: 0.008, V24: -0.028, V25: 0.238, V26: 0.133, V27: -0.092, V28: 0.013, Amount: 111.900.
7,738
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.949, V2: -0.917, V3: -0.906, V4: -1.501, V5: -0.082, V6: -0.430, V7: 0.446, V8: -0.255, V9: 0.927, V10: -1.046, V11: 0.492, V12: 1.535, V13: 0.953, V14: 0.264, V15: 0.046, V16: -0.562, V17: -0.492, V18: 0.358, V19: 1.682, V20: 0.455, V21: 0.078, V22: -0.016, V23: -0.531, V24: -0.725, V25: 0.894, V26: 0.124, V27: -0.055, V28: 0.021, Amount: 227.130.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.949, V2: -0.917, V3: -0.906, V4: -1.501, V5: -0.082, V6: -0.430, V7: 0.446, V8: -0.255, V9: 0.927, V10: -1.046, V11: 0.492, V12: 1.535, V13: 0.953, V14: 0.264, V15: 0.046, V16: -0.562, V17: -0.492, V18: 0.358, V19: 1.682, V20: 0.455, V21: 0.078, V22: -0.016, V23: -0.531, V24: -0.725, V25: 0.894, V26: 0.124, V27: -0.055, V28: 0.021, Amount: 227.130.
7,739
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.610, V2: 0.675, V3: 1.517, V4: -0.510, V5: 0.377, V6: -0.938, V7: 0.963, V8: -0.293, V9: -0.466, V10: -0.149, V11: 1.308, V12: 0.359, V13: -0.613, V14: 0.248, V15: -0.397, V16: 0.353, V17: -0.896, V18: 0.208, V19: -0.551, V20: -0.127, V21: 0.138, V22: 0.444, V23: -0.205, V24: 0.555, V25: -0.313, V26: 0.110, V27: -0.217, V28: -0.096, Amount: 14.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.610, V2: 0.675, V3: 1.517, V4: -0.510, V5: 0.377, V6: -0.938, V7: 0.963, V8: -0.293, V9: -0.466, V10: -0.149, V11: 1.308, V12: 0.359, V13: -0.613, V14: 0.248, V15: -0.397, V16: 0.353, V17: -0.896, V18: 0.208, V19: -0.551, V20: -0.127, V21: 0.138, V22: 0.444, V23: -0.205, V24: 0.555, V25: -0.313, V26: 0.110, V27: -0.217, V28: -0.096, Amount: 14.900.
7,740
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.104, V2: 2.601, V3: 0.603, V4: -2.052, V5: -0.247, V6: -0.730, V7: 0.963, V8: -0.473, V9: 3.046, V10: 3.946, V11: 0.322, V12: -0.187, V13: -0.247, V14: -1.632, V15: 1.086, V16: -0.191, V17: -0.870, V18: -1.103, V19: -1.461, V20: 1.723, V21: -0.644, V22: -0.298, V23: 0.035, V24: 0.061, V25: 0.175, V26: 0.655, V27: 0.356, V28: -0.335, Amount: 3.460.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.104, V2: 2.601, V3: 0.603, V4: -2.052, V5: -0.247, V6: -0.730, V7: 0.963, V8: -0.473, V9: 3.046, V10: 3.946, V11: 0.322, V12: -0.187, V13: -0.247, V14: -1.632, V15: 1.086, V16: -0.191, V17: -0.870, V18: -1.103, V19: -1.461, V20: 1.723, V21: -0.644, V22: -0.298, V23: 0.035, V24: 0.061, V25: 0.175, V26: 0.655, V27: 0.356, V28: -0.335, Amount: 3.460.
7,741
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.167, V2: -0.653, V3: -0.703, V4: -0.872, V5: -0.772, V6: -1.083, V7: -0.476, V8: -0.322, V9: -0.496, V10: 0.710, V11: -0.271, V12: 0.324, V13: 1.485, V14: -0.398, V15: 0.184, V16: 1.045, V17: 0.125, V18: -2.126, V19: 0.673, V20: 0.049, V21: -0.232, V22: -0.678, V23: 0.474, V24: -0.040, V25: -0.529, V26: -0.690, V27: -0.002, V28: -0.041, Amount: 16.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.167, V2: -0.653, V3: -0.703, V4: -0.872, V5: -0.772, V6: -1.083, V7: -0.476, V8: -0.322, V9: -0.496, V10: 0.710, V11: -0.271, V12: 0.324, V13: 1.485, V14: -0.398, V15: 0.184, V16: 1.045, V17: 0.125, V18: -2.126, V19: 0.673, V20: 0.049, V21: -0.232, V22: -0.678, V23: 0.474, V24: -0.040, V25: -0.529, V26: -0.690, V27: -0.002, V28: -0.041, Amount: 16.890.
7,742
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.752, V2: -1.127, V3: -2.960, V4: -1.747, V5: 2.083, V6: 3.019, V7: -0.238, V8: 0.664, V9: 0.765, V10: -0.401, V11: 0.245, V12: 0.518, V13: -0.128, V14: 0.644, V15: 1.109, V16: -0.312, V17: -0.326, V18: -0.897, V19: 0.361, V20: 0.245, V21: -0.176, V22: -0.918, V23: 0.230, V24: 0.727, V25: -0.374, V26: 0.347, V27: -0.101, V28: -0.040, Amount: 181.370.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.752, V2: -1.127, V3: -2.960, V4: -1.747, V5: 2.083, V6: 3.019, V7: -0.238, V8: 0.664, V9: 0.765, V10: -0.401, V11: 0.245, V12: 0.518, V13: -0.128, V14: 0.644, V15: 1.109, V16: -0.312, V17: -0.326, V18: -0.897, V19: 0.361, V20: 0.245, V21: -0.176, V22: -0.918, V23: 0.230, V24: 0.727, V25: -0.374, V26: 0.347, V27: -0.101, V28: -0.040, Amount: 181.370.
7,743
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.135, V2: 0.519, V3: 0.965, V4: 0.355, V5: 0.437, V6: -0.591, V7: 1.022, V8: -0.272, V9: 0.230, V10: -0.282, V11: -1.374, V12: -0.661, V13: -1.091, V14: 0.055, V15: -0.159, V16: 0.009, V17: -0.738, V18: 0.205, V19: -0.578, V20: -0.098, V21: 0.145, V22: 0.575, V23: 0.004, V24: -0.081, V25: -0.730, V26: -0.821, V27: 0.072, V28: 0.014, Amount: 46.250.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.135, V2: 0.519, V3: 0.965, V4: 0.355, V5: 0.437, V6: -0.591, V7: 1.022, V8: -0.272, V9: 0.230, V10: -0.282, V11: -1.374, V12: -0.661, V13: -1.091, V14: 0.055, V15: -0.159, V16: 0.009, V17: -0.738, V18: 0.205, V19: -0.578, V20: -0.098, V21: 0.145, V22: 0.575, V23: 0.004, V24: -0.081, V25: -0.730, V26: -0.821, V27: 0.072, V28: 0.014, Amount: 46.250.
7,744
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.077, V2: 1.202, V3: -2.316, V4: -1.361, V5: 1.519, V6: 3.566, V7: -1.479, V8: 2.249, V9: 0.115, V10: -1.333, V11: -0.488, V12: 0.242, V13: -0.011, V14: -0.436, V15: 0.458, V16: 1.040, V17: 0.608, V18: 0.728, V19: -0.923, V20: -0.495, V21: 0.470, V22: 0.903, V23: 0.228, V24: 0.655, V25: -0.921, V26: 0.464, V27: -0.615, V28: -0.081, Amount: 13.620.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.077, V2: 1.202, V3: -2.316, V4: -1.361, V5: 1.519, V6: 3.566, V7: -1.479, V8: 2.249, V9: 0.115, V10: -1.333, V11: -0.488, V12: 0.242, V13: -0.011, V14: -0.436, V15: 0.458, V16: 1.040, V17: 0.608, V18: 0.728, V19: -0.923, V20: -0.495, V21: 0.470, V22: 0.903, V23: 0.228, V24: 0.655, V25: -0.921, V26: 0.464, V27: -0.615, V28: -0.081, Amount: 13.620.
7,745
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.087, V2: -0.446, V3: 0.355, V4: -2.327, V5: -1.297, V6: -0.863, V7: -0.500, V8: 0.204, V9: -2.102, V10: 0.593, V11: -1.227, V12: -0.516, V13: 1.217, V14: -0.453, V15: -0.697, V16: -0.390, V17: 0.479, V18: 0.040, V19: -0.409, V20: -0.339, V21: 0.003, V22: 0.276, V23: 0.168, V24: 0.036, V25: -0.432, V26: -0.257, V27: -0.040, V28: -0.023, Amount: 60.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.087, V2: -0.446, V3: 0.355, V4: -2.327, V5: -1.297, V6: -0.863, V7: -0.500, V8: 0.204, V9: -2.102, V10: 0.593, V11: -1.227, V12: -0.516, V13: 1.217, V14: -0.453, V15: -0.697, V16: -0.390, V17: 0.479, V18: 0.040, V19: -0.409, V20: -0.339, V21: 0.003, V22: 0.276, V23: 0.168, V24: 0.036, V25: -0.432, V26: -0.257, V27: -0.040, V28: -0.023, Amount: 60.000.
7,746
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.516, V2: -0.604, V3: -0.895, V4: 0.440, V5: 1.921, V6: 0.072, V7: 0.318, V8: -0.856, V9: -0.192, V10: -0.569, V11: -0.484, V12: 0.827, V13: -0.041, V14: 0.721, V15: -0.429, V16: -1.306, V17: 0.425, V18: -2.112, V19: -2.407, V20: 0.096, V21: 1.153, V22: 0.082, V23: -1.926, V24: -0.931, V25: 0.242, V26: -0.574, V27: 0.269, V28: 0.375, Amount: 366.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.516, V2: -0.604, V3: -0.895, V4: 0.440, V5: 1.921, V6: 0.072, V7: 0.318, V8: -0.856, V9: -0.192, V10: -0.569, V11: -0.484, V12: 0.827, V13: -0.041, V14: 0.721, V15: -0.429, V16: -1.306, V17: 0.425, V18: -2.112, V19: -2.407, V20: 0.096, V21: 1.153, V22: 0.082, V23: -1.926, V24: -0.931, V25: 0.242, V26: -0.574, V27: 0.269, V28: 0.375, Amount: 366.000.
7,747
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.040, V2: -0.264, V3: -1.969, V4: 0.488, V5: 0.357, V6: -0.819, V7: 0.347, V8: -0.216, V9: 0.727, V10: 0.182, V11: -1.613, V12: -1.086, V13: -2.482, V14: 0.883, V15: -0.124, V16: -0.344, V17: -0.090, V18: -0.363, V19: 0.274, V20: -0.289, V21: -0.060, V22: -0.194, V23: 0.064, V24: 0.459, V25: 0.182, V26: 0.367, V27: -0.111, V28: -0.069, Amount: 41.590.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.040, V2: -0.264, V3: -1.969, V4: 0.488, V5: 0.357, V6: -0.819, V7: 0.347, V8: -0.216, V9: 0.727, V10: 0.182, V11: -1.613, V12: -1.086, V13: -2.482, V14: 0.883, V15: -0.124, V16: -0.344, V17: -0.090, V18: -0.363, V19: 0.274, V20: -0.289, V21: -0.060, V22: -0.194, V23: 0.064, V24: 0.459, V25: 0.182, V26: 0.367, V27: -0.111, V28: -0.069, Amount: 41.590.
7,748
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.016, V2: 1.115, V3: -0.365, V4: -0.646, V5: 1.044, V6: -0.726, V7: 1.136, V8: -0.282, V9: 0.316, V10: -0.317, V11: -0.585, V12: -0.278, V13: -0.184, V14: -1.260, V15: -0.127, V16: 0.186, V17: 0.308, V18: -0.318, V19: -0.313, V20: 0.200, V21: -0.422, V22: -0.826, V23: 0.068, V24: 0.491, V25: -0.413, V26: 0.096, V27: 0.167, V28: -0.080, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.016, V2: 1.115, V3: -0.365, V4: -0.646, V5: 1.044, V6: -0.726, V7: 1.136, V8: -0.282, V9: 0.316, V10: -0.317, V11: -0.585, V12: -0.278, V13: -0.184, V14: -1.260, V15: -0.127, V16: 0.186, V17: 0.308, V18: -0.318, V19: -0.313, V20: 0.200, V21: -0.422, V22: -0.826, V23: 0.068, V24: 0.491, V25: -0.413, V26: 0.096, V27: 0.167, V28: -0.080, Amount: 1.980.
7,749
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.316, V2: 0.379, V3: -0.032, V4: 0.490, V5: 0.095, V6: -0.577, V7: 0.112, V8: -0.187, V9: -0.007, V10: -0.300, V11: -0.707, V12: 0.300, V13: 1.016, V14: -0.466, V15: 1.085, V16: 0.693, V17: -0.347, V18: -0.104, V19: 0.114, V20: -0.012, V21: -0.335, V22: -0.932, V23: 0.018, V24: -0.478, V25: 0.350, V26: 0.144, V27: -0.020, V28: 0.024, Amount: 1.780.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.316, V2: 0.379, V3: -0.032, V4: 0.490, V5: 0.095, V6: -0.577, V7: 0.112, V8: -0.187, V9: -0.007, V10: -0.300, V11: -0.707, V12: 0.300, V13: 1.016, V14: -0.466, V15: 1.085, V16: 0.693, V17: -0.347, V18: -0.104, V19: 0.114, V20: -0.012, V21: -0.335, V22: -0.932, V23: 0.018, V24: -0.478, V25: 0.350, V26: 0.144, V27: -0.020, V28: 0.024, Amount: 1.780.
7,750
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.955, V2: -0.220, V3: -0.774, V4: 0.602, V5: -0.313, V6: -0.861, V7: -0.029, V8: -0.263, V9: 0.640, V10: 0.045, V11: -0.653, V12: 0.801, V13: 0.872, V14: -0.029, V15: 0.216, V16: -0.016, V17: -0.408, V18: -0.582, V19: -0.225, V20: -0.107, V21: 0.000, V22: 0.135, V23: 0.190, V24: 0.032, V25: -0.201, V26: 0.223, V27: -0.037, V28: -0.046, Amount: 39.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.955, V2: -0.220, V3: -0.774, V4: 0.602, V5: -0.313, V6: -0.861, V7: -0.029, V8: -0.263, V9: 0.640, V10: 0.045, V11: -0.653, V12: 0.801, V13: 0.872, V14: -0.029, V15: 0.216, V16: -0.016, V17: -0.408, V18: -0.582, V19: -0.225, V20: -0.107, V21: 0.000, V22: 0.135, V23: 0.190, V24: 0.032, V25: -0.201, V26: 0.223, V27: -0.037, V28: -0.046, Amount: 39.000.
7,751
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.902, V2: -0.871, V3: 1.103, V4: 0.460, V5: -1.470, V6: -0.134, V7: -0.670, V8: 0.241, V9: 1.059, V10: -0.239, V11: 0.832, V12: 0.570, V13: -1.524, V14: -0.039, V15: -0.893, V16: 0.138, V17: 0.032, V18: -0.010, V19: 0.578, V20: 0.090, V21: -0.107, V22: -0.445, V23: -0.001, V24: 0.574, V25: -0.012, V26: 0.872, V27: -0.068, V28: 0.026, Amount: 135.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.902, V2: -0.871, V3: 1.103, V4: 0.460, V5: -1.470, V6: -0.134, V7: -0.670, V8: 0.241, V9: 1.059, V10: -0.239, V11: 0.832, V12: 0.570, V13: -1.524, V14: -0.039, V15: -0.893, V16: 0.138, V17: 0.032, V18: -0.010, V19: 0.578, V20: 0.090, V21: -0.107, V22: -0.445, V23: -0.001, V24: 0.574, V25: -0.012, V26: 0.872, V27: -0.068, V28: 0.026, Amount: 135.000.
7,752
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.625, V2: 2.681, V3: -3.861, V4: -0.244, V5: 5.053, V6: -3.675, V7: -10.992, V8: -9.028, V9: -0.463, V10: -0.094, V11: -0.730, V12: 2.050, V13: -2.698, V14: 4.087, V15: -1.699, V16: 0.305, V17: 0.854, V18: -0.150, V19: -0.826, V20: 1.792, V21: -4.460, V22: 1.640, V23: -9.074, V24: 0.169, V25: -3.756, V26: 0.359, V27: 0.346, V28: 0.521, Amount: 2.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.625, V2: 2.681, V3: -3.861, V4: -0.244, V5: 5.053, V6: -3.675, V7: -10.992, V8: -9.028, V9: -0.463, V10: -0.094, V11: -0.730, V12: 2.050, V13: -2.698, V14: 4.087, V15: -1.699, V16: 0.305, V17: 0.854, V18: -0.150, V19: -0.826, V20: 1.792, V21: -4.460, V22: 1.640, V23: -9.074, V24: 0.169, V25: -3.756, V26: 0.359, V27: 0.346, V28: 0.521, Amount: 2.000.
7,753
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.464, V2: -1.884, V3: 0.760, V4: -0.687, V5: -1.825, V6: -0.286, V7: -0.278, V8: -0.097, V9: 2.264, V10: -1.593, V11: -0.610, V12: 1.865, V13: 1.420, V14: -0.948, V15: -0.264, V16: -1.000, V17: 0.356, V18: -0.313, V19: 1.040, V20: 0.792, V21: 0.155, V22: 0.097, V23: -0.427, V24: 0.538, V25: 0.378, V26: -0.006, V27: 0.004, V28: 0.097, Amount: 400.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.464, V2: -1.884, V3: 0.760, V4: -0.687, V5: -1.825, V6: -0.286, V7: -0.278, V8: -0.097, V9: 2.264, V10: -1.593, V11: -0.610, V12: 1.865, V13: 1.420, V14: -0.948, V15: -0.264, V16: -1.000, V17: 0.356, V18: -0.313, V19: 1.040, V20: 0.792, V21: 0.155, V22: 0.097, V23: -0.427, V24: 0.538, V25: 0.378, V26: -0.006, V27: 0.004, V28: 0.097, Amount: 400.000.
7,754
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.823, V2: -0.852, V3: 0.849, V4: 1.654, V5: -1.315, V6: 1.211, V7: -1.655, V8: 0.632, V9: 2.338, V10: 0.014, V11: -0.607, V12: 0.864, V13: -1.162, V14: -0.872, V15: -2.123, V16: 0.055, V17: -0.295, V18: 0.817, V19: 0.200, V20: -0.346, V21: 0.137, V22: 0.926, V23: 0.095, V24: -0.398, V25: -0.163, V26: -0.464, V27: 0.129, V28: -0.035, Amount: 1.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.823, V2: -0.852, V3: 0.849, V4: 1.654, V5: -1.315, V6: 1.211, V7: -1.655, V8: 0.632, V9: 2.338, V10: 0.014, V11: -0.607, V12: 0.864, V13: -1.162, V14: -0.872, V15: -2.123, V16: 0.055, V17: -0.295, V18: 0.817, V19: 0.200, V20: -0.346, V21: 0.137, V22: 0.926, V23: 0.095, V24: -0.398, V25: -0.163, V26: -0.464, V27: 0.129, V28: -0.035, Amount: 1.000.
7,755
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.690, V2: -0.007, V3: -0.176, V4: 3.401, V5: 0.589, V6: 2.198, V7: -0.782, V8: 0.689, V9: -0.620, V10: 1.475, V11: 0.457, V12: 0.160, V13: -0.389, V14: 0.263, V15: 0.102, V16: 0.939, V17: -0.714, V18: -0.449, V19: -2.436, V20: -0.303, V21: 0.300, V22: 0.874, V23: 0.179, V24: -1.678, V25: -0.471, V26: 0.108, V27: 0.044, V28: -0.053, Amount: 37.930.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.690, V2: -0.007, V3: -0.176, V4: 3.401, V5: 0.589, V6: 2.198, V7: -0.782, V8: 0.689, V9: -0.620, V10: 1.475, V11: 0.457, V12: 0.160, V13: -0.389, V14: 0.263, V15: 0.102, V16: 0.939, V17: -0.714, V18: -0.449, V19: -2.436, V20: -0.303, V21: 0.300, V22: 0.874, V23: 0.179, V24: -1.678, V25: -0.471, V26: 0.108, V27: 0.044, V28: -0.053, Amount: 37.930.
7,756
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.128, V2: -1.673, V3: -1.317, V4: -1.713, V5: -0.951, V6: -0.078, V7: -1.050, V8: -0.051, V9: -1.447, V10: 1.711, V11: 0.237, V12: -0.417, V13: 0.160, V14: -0.160, V15: -0.807, V16: -0.254, V17: 0.107, V18: 0.571, V19: 0.311, V20: -0.228, V21: -0.102, V22: -0.049, V23: 0.123, V24: 0.259, V25: -0.161, V26: -0.195, V27: -0.019, V28: -0.044, Amount: 103.430.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.128, V2: -1.673, V3: -1.317, V4: -1.713, V5: -0.951, V6: -0.078, V7: -1.050, V8: -0.051, V9: -1.447, V10: 1.711, V11: 0.237, V12: -0.417, V13: 0.160, V14: -0.160, V15: -0.807, V16: -0.254, V17: 0.107, V18: 0.571, V19: 0.311, V20: -0.228, V21: -0.102, V22: -0.049, V23: 0.123, V24: 0.259, V25: -0.161, V26: -0.195, V27: -0.019, V28: -0.044, Amount: 103.430.
7,757
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.581, V2: 0.945, V3: 2.241, V4: -0.091, V5: -0.012, V6: -0.272, V7: 0.373, V8: -0.051, V9: 1.321, V10: -1.372, V11: 0.266, V12: -2.351, V13: 1.960, V14: 1.408, V15: 0.586, V16: -0.263, V17: 0.441, V18: 0.426, V19: 0.462, V20: 0.004, V21: -0.248, V22: -0.413, V23: -0.256, V24: -0.110, V25: 0.286, V26: -0.697, V27: 0.088, V28: 0.077, Amount: 6.850.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.581, V2: 0.945, V3: 2.241, V4: -0.091, V5: -0.012, V6: -0.272, V7: 0.373, V8: -0.051, V9: 1.321, V10: -1.372, V11: 0.266, V12: -2.351, V13: 1.960, V14: 1.408, V15: 0.586, V16: -0.263, V17: 0.441, V18: 0.426, V19: 0.462, V20: 0.004, V21: -0.248, V22: -0.413, V23: -0.256, V24: -0.110, V25: 0.286, V26: -0.697, V27: 0.088, V28: 0.077, Amount: 6.850.
7,758
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.840, V2: 0.985, V3: 1.568, V4: -0.158, V5: 0.139, V6: -0.246, V7: 0.510, V8: 0.115, V9: -0.574, V10: 0.031, V11: 1.772, V12: 0.952, V13: 0.204, V14: 0.244, V15: 0.374, V16: 0.009, V17: -0.326, V18: -0.423, V19: -0.117, V20: 0.030, V21: -0.109, V22: -0.296, V23: 0.123, V24: 0.210, V25: -0.312, V26: 0.048, V27: 0.019, V28: 0.108, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.840, V2: 0.985, V3: 1.568, V4: -0.158, V5: 0.139, V6: -0.246, V7: 0.510, V8: 0.115, V9: -0.574, V10: 0.031, V11: 1.772, V12: 0.952, V13: 0.204, V14: 0.244, V15: 0.374, V16: 0.009, V17: -0.326, V18: -0.423, V19: -0.117, V20: 0.030, V21: -0.109, V22: -0.296, V23: 0.123, V24: 0.210, V25: -0.312, V26: 0.048, V27: 0.019, V28: 0.108, Amount: 0.890.
7,759
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.281, V2: 0.776, V3: -0.313, V4: 1.264, V5: 0.528, V6: -1.002, V7: 0.954, V8: -0.575, V9: -0.128, V10: 0.009, V11: -0.333, V12: -0.797, V13: -0.432, V14: -0.739, V15: 2.113, V16: -0.968, V17: 1.235, V18: 1.053, V19: 2.235, V20: 0.219, V21: 0.325, V22: 1.325, V23: -0.039, V24: 0.002, V25: -1.050, V26: 0.126, V27: 0.045, V28: 0.077, Amount: 41.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.281, V2: 0.776, V3: -0.313, V4: 1.264, V5: 0.528, V6: -1.002, V7: 0.954, V8: -0.575, V9: -0.128, V10: 0.009, V11: -0.333, V12: -0.797, V13: -0.432, V14: -0.739, V15: 2.113, V16: -0.968, V17: 1.235, V18: 1.053, V19: 2.235, V20: 0.219, V21: 0.325, V22: 1.325, V23: -0.039, V24: 0.002, V25: -1.050, V26: 0.126, V27: 0.045, V28: 0.077, Amount: 41.880.
7,760
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.421, V2: 0.567, V3: -1.500, V4: -0.458, V5: 1.813, V6: -1.348, V7: -0.716, V8: -2.112, V9: -1.663, V10: -1.133, V11: 0.025, V12: 0.746, V13: -0.768, V14: 1.995, V15: -1.286, V16: 0.029, V17: -0.059, V18: 0.054, V19: -0.069, V20: 0.025, V21: -1.035, V22: 1.029, V23: -1.463, V24: -0.295, V25: 1.338, V26: 0.804, V27: 0.183, V28: -0.621, Amount: 12.010.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.421, V2: 0.567, V3: -1.500, V4: -0.458, V5: 1.813, V6: -1.348, V7: -0.716, V8: -2.112, V9: -1.663, V10: -1.133, V11: 0.025, V12: 0.746, V13: -0.768, V14: 1.995, V15: -1.286, V16: 0.029, V17: -0.059, V18: 0.054, V19: -0.069, V20: 0.025, V21: -1.035, V22: 1.029, V23: -1.463, V24: -0.295, V25: 1.338, V26: 0.804, V27: 0.183, V28: -0.621, Amount: 12.010.
7,761
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.209, V2: -2.338, V3: -4.422, V4: -1.101, V5: 2.147, V6: 2.886, V7: 0.657, V8: 0.268, V9: -1.383, V10: 0.808, V11: -0.225, V12: -0.155, V13: -0.003, V14: 0.999, V15: 0.092, V16: -2.296, V17: 0.121, V18: 0.577, V19: -0.963, V20: 0.528, V21: 0.218, V22: -0.054, V23: -0.523, V24: 0.804, V25: 0.346, V26: 0.983, V27: -0.203, V28: -0.005, Amount: 544.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.209, V2: -2.338, V3: -4.422, V4: -1.101, V5: 2.147, V6: 2.886, V7: 0.657, V8: 0.268, V9: -1.383, V10: 0.808, V11: -0.225, V12: -0.155, V13: -0.003, V14: 0.999, V15: 0.092, V16: -2.296, V17: 0.121, V18: 0.577, V19: -0.963, V20: 0.528, V21: 0.218, V22: -0.054, V23: -0.523, V24: 0.804, V25: 0.346, V26: 0.983, V27: -0.203, V28: -0.005, Amount: 544.000.
7,762
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -3.269, V2: -5.634, V3: 0.799, V4: -1.086, V5: 2.194, V6: -2.888, V7: -2.201, V8: 0.247, V9: -1.837, V10: 1.016, V11: -0.700, V12: -1.086, V13: -0.074, V14: -0.092, V15: 0.285, V16: -0.491, V17: 0.544, V18: -0.095, V19: -1.338, V20: 1.250, V21: 0.454, V22: -0.100, V23: 1.621, V24: -0.030, V25: -0.415, V26: -0.466, V27: -0.117, V28: 0.200, Amount: 306.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -3.269, V2: -5.634, V3: 0.799, V4: -1.086, V5: 2.194, V6: -2.888, V7: -2.201, V8: 0.247, V9: -1.837, V10: 1.016, V11: -0.700, V12: -1.086, V13: -0.074, V14: -0.092, V15: 0.285, V16: -0.491, V17: 0.544, V18: -0.095, V19: -1.338, V20: 1.250, V21: 0.454, V22: -0.100, V23: 1.621, V24: -0.030, V25: -0.415, V26: -0.466, V27: -0.117, V28: 0.200, Amount: 306.000.
7,763
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.161, V2: -0.303, V3: -0.348, V4: -0.489, V5: 0.266, V6: 0.403, V7: -0.051, V8: 0.097, V9: 0.016, V10: -0.111, V11: 0.517, V12: 0.611, V13: 0.290, V14: 0.419, V15: 0.700, V16: 0.519, V17: -0.731, V18: -0.167, V19: 0.585, V20: 0.112, V21: -0.194, V22: -0.722, V23: -0.109, V24: -1.294, V25: 0.223, V26: 0.935, V27: -0.091, V28: -0.010, Amount: 80.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.161, V2: -0.303, V3: -0.348, V4: -0.489, V5: 0.266, V6: 0.403, V7: -0.051, V8: 0.097, V9: 0.016, V10: -0.111, V11: 0.517, V12: 0.611, V13: 0.290, V14: 0.419, V15: 0.700, V16: 0.519, V17: -0.731, V18: -0.167, V19: 0.585, V20: 0.112, V21: -0.194, V22: -0.722, V23: -0.109, V24: -1.294, V25: 0.223, V26: 0.935, V27: -0.091, V28: -0.010, Amount: 80.000.
7,764
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.011, V2: -1.912, V3: -0.423, V4: -1.556, V5: -1.735, V6: -0.119, V7: -1.485, V8: 0.067, V9: -1.060, V10: 1.632, V11: 0.419, V12: -0.267, V13: 0.181, V14: -0.405, V15: -0.462, V16: 0.078, V17: 0.058, V18: 0.548, V19: 0.094, V20: -0.213, V21: -0.223, V22: -0.439, V23: 0.292, V24: -0.459, V25: -0.649, V26: -0.418, V27: 0.022, V28: -0.029, Amount: 125.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.011, V2: -1.912, V3: -0.423, V4: -1.556, V5: -1.735, V6: -0.119, V7: -1.485, V8: 0.067, V9: -1.060, V10: 1.632, V11: 0.419, V12: -0.267, V13: 0.181, V14: -0.405, V15: -0.462, V16: 0.078, V17: 0.058, V18: 0.548, V19: 0.094, V20: -0.213, V21: -0.223, V22: -0.439, V23: 0.292, V24: -0.459, V25: -0.649, V26: -0.418, V27: 0.022, V28: -0.029, Amount: 125.000.
7,765
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.866, V2: -0.681, V3: -0.199, V4: 0.201, V5: -0.262, V6: -0.082, V7: 0.074, V8: -0.040, V9: 1.538, V10: -0.546, V11: 1.869, V12: -2.223, V13: 0.217, V14: 2.110, V15: -0.846, V16: -0.276, V17: 0.798, V18: -0.130, V19: 0.166, V20: 0.169, V21: -0.078, V22: -0.336, V23: -0.254, V24: -0.287, V25: 0.344, V26: 1.099, V27: -0.156, V28: 0.000, Amount: 200.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.866, V2: -0.681, V3: -0.199, V4: 0.201, V5: -0.262, V6: -0.082, V7: 0.074, V8: -0.040, V9: 1.538, V10: -0.546, V11: 1.869, V12: -2.223, V13: 0.217, V14: 2.110, V15: -0.846, V16: -0.276, V17: 0.798, V18: -0.130, V19: 0.166, V20: 0.169, V21: -0.078, V22: -0.336, V23: -0.254, V24: -0.287, V25: 0.344, V26: 1.099, V27: -0.156, V28: 0.000, Amount: 200.000.
7,766
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.366, V2: 0.327, V3: -0.251, V4: -1.508, V5: 2.786, V6: 3.600, V7: -0.284, V8: 1.468, V9: -0.674, V10: -1.101, V11: -0.393, V12: 0.007, V13: -0.253, V14: 0.580, V15: 0.433, V16: 0.066, V17: -0.304, V18: -0.285, V19: -0.203, V20: 0.072, V21: 0.056, V22: -0.256, V23: -0.299, V24: 0.727, V25: 0.647, V26: 0.380, V27: -0.115, V28: -0.095, Amount: 20.900.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.366, V2: 0.327, V3: -0.251, V4: -1.508, V5: 2.786, V6: 3.600, V7: -0.284, V8: 1.468, V9: -0.674, V10: -1.101, V11: -0.393, V12: 0.007, V13: -0.253, V14: 0.580, V15: 0.433, V16: 0.066, V17: -0.304, V18: -0.285, V19: -0.203, V20: 0.072, V21: 0.056, V22: -0.256, V23: -0.299, V24: 0.727, V25: 0.647, V26: 0.380, V27: -0.115, V28: -0.095, Amount: 20.900.
7,767
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.138, V2: 0.196, V3: -0.268, V4: 1.180, V5: 0.798, V6: -0.661, V7: 2.112, V8: -0.702, V9: -0.230, V10: 0.403, V11: -1.100, V12: -0.598, V13: -0.824, V14: 0.268, V15: -0.091, V16: -1.132, V17: 0.022, V18: -0.297, V19: 0.889, V20: -0.391, V21: -0.105, V22: 0.727, V23: 0.398, V24: -0.073, V25: 0.170, V26: -0.374, V27: 0.315, V28: -0.156, Amount: 170.880.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.138, V2: 0.196, V3: -0.268, V4: 1.180, V5: 0.798, V6: -0.661, V7: 2.112, V8: -0.702, V9: -0.230, V10: 0.403, V11: -1.100, V12: -0.598, V13: -0.824, V14: 0.268, V15: -0.091, V16: -1.132, V17: 0.022, V18: -0.297, V19: 0.889, V20: -0.391, V21: -0.105, V22: 0.727, V23: 0.398, V24: -0.073, V25: 0.170, V26: -0.374, V27: 0.315, V28: -0.156, Amount: 170.880.
7,768
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.084, V2: -0.079, V3: -2.649, V4: 0.026, V5: 1.007, V6: -0.842, V7: 0.743, V8: -0.373, V9: 0.533, V10: -0.031, V11: -1.598, V12: -0.735, V13: -1.412, V14: 1.107, V15: 0.735, V16: -0.507, V17: -0.471, V18: 0.017, V19: 0.289, V20: -0.221, V21: 0.132, V22: 0.348, V23: -0.159, V24: -0.099, V25: 0.636, V26: -0.396, V27: -0.056, V28: -0.066, Amount: 50.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.084, V2: -0.079, V3: -2.649, V4: 0.026, V5: 1.007, V6: -0.842, V7: 0.743, V8: -0.373, V9: 0.533, V10: -0.031, V11: -1.598, V12: -0.735, V13: -1.412, V14: 1.107, V15: 0.735, V16: -0.507, V17: -0.471, V18: 0.017, V19: 0.289, V20: -0.221, V21: 0.132, V22: 0.348, V23: -0.159, V24: -0.099, V25: 0.636, V26: -0.396, V27: -0.056, V28: -0.066, Amount: 50.000.
7,769
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.062, V2: 0.519, V3: 0.661, V4: 2.529, V5: -0.112, V6: -0.391, V7: 0.271, V8: -0.011, V9: -0.830, V10: 0.621, V11: -0.018, V12: -0.123, V13: -0.707, V14: 0.588, V15: 0.686, V16: 0.302, V17: -0.129, V18: -1.306, V19: -1.212, V20: -0.173, V21: -0.429, V22: -1.428, V23: 0.315, V24: 0.291, V25: -0.013, V26: -0.479, V27: -0.012, V28: 0.033, Amount: 37.350.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.062, V2: 0.519, V3: 0.661, V4: 2.529, V5: -0.112, V6: -0.391, V7: 0.271, V8: -0.011, V9: -0.830, V10: 0.621, V11: -0.018, V12: -0.123, V13: -0.707, V14: 0.588, V15: 0.686, V16: 0.302, V17: -0.129, V18: -1.306, V19: -1.212, V20: -0.173, V21: -0.429, V22: -1.428, V23: 0.315, V24: 0.291, V25: -0.013, V26: -0.479, V27: -0.012, V28: 0.033, Amount: 37.350.
7,770
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.113, V2: 1.065, V3: -0.492, V4: -0.395, V5: 1.124, V6: -0.980, V7: 1.191, V8: -0.227, V9: -0.322, V10: -0.849, V11: -1.129, V12: -0.496, V13: -0.047, V14: -1.012, V15: 0.038, V16: 0.145, V17: 0.589, V18: 0.101, V19: 0.558, V20: 0.166, V21: -0.264, V22: -0.597, V23: -0.203, V24: -0.730, V25: 0.124, V26: 0.610, V27: 0.207, V28: 0.090, Amount: 18.650.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.113, V2: 1.065, V3: -0.492, V4: -0.395, V5: 1.124, V6: -0.980, V7: 1.191, V8: -0.227, V9: -0.322, V10: -0.849, V11: -1.129, V12: -0.496, V13: -0.047, V14: -1.012, V15: 0.038, V16: 0.145, V17: 0.589, V18: 0.101, V19: 0.558, V20: 0.166, V21: -0.264, V22: -0.597, V23: -0.203, V24: -0.730, V25: 0.124, V26: 0.610, V27: 0.207, V28: 0.090, Amount: 18.650.
7,771
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.310, V2: 1.057, V3: -1.541, V4: -0.608, V5: 1.777, V6: -0.757, V7: 1.590, V8: -0.343, V9: -0.562, V10: -1.050, V11: -1.193, V12: -0.411, V13: 0.139, V14: -0.947, V15: -0.541, V16: -0.031, V17: 0.543, V18: 0.057, V19: -0.095, V20: -0.061, V21: 0.066, V22: 0.284, V23: -0.304, V24: -0.004, V25: 0.275, V26: 0.651, V27: -0.065, V28: -0.003, Amount: 25.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.310, V2: 1.057, V3: -1.541, V4: -0.608, V5: 1.777, V6: -0.757, V7: 1.590, V8: -0.343, V9: -0.562, V10: -1.050, V11: -1.193, V12: -0.411, V13: 0.139, V14: -0.947, V15: -0.541, V16: -0.031, V17: 0.543, V18: 0.057, V19: -0.095, V20: -0.061, V21: 0.066, V22: 0.284, V23: -0.304, V24: -0.004, V25: 0.275, V26: 0.651, V27: -0.065, V28: -0.003, Amount: 25.890.
7,772
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.122, V2: -0.275, V3: -0.818, V4: 0.130, V5: 1.804, V6: 3.654, V7: -0.717, V8: 0.906, V9: 0.113, V10: 0.063, V11: -0.211, V12: 0.015, V13: 0.120, V14: 0.273, V15: 1.395, V16: 0.768, V17: -1.106, V18: 0.651, V19: -0.275, V20: 0.142, V21: 0.121, V22: 0.090, V23: -0.178, V24: 1.010, V25: 0.661, V26: -0.273, V27: 0.032, V28: 0.037, Amount: 76.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.122, V2: -0.275, V3: -0.818, V4: 0.130, V5: 1.804, V6: 3.654, V7: -0.717, V8: 0.906, V9: 0.113, V10: 0.063, V11: -0.211, V12: 0.015, V13: 0.120, V14: 0.273, V15: 1.395, V16: 0.768, V17: -1.106, V18: 0.651, V19: -0.275, V20: 0.142, V21: 0.121, V22: 0.090, V23: -0.178, V24: 1.010, V25: 0.661, V26: -0.273, V27: 0.032, V28: 0.037, Amount: 76.000.
7,773
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.152, V2: -0.311, V3: 1.338, V4: 0.965, V5: -1.444, V6: -0.547, V7: -0.755, V8: 0.169, V9: 1.225, V10: -0.180, V11: -0.796, V12: -0.563, V13: -2.105, V14: 0.030, V15: 0.405, V16: 0.165, V17: 0.065, V18: -0.086, V19: -0.151, V20: -0.240, V21: -0.093, V22: -0.182, V23: 0.094, V24: 0.690, V25: 0.139, V26: 0.303, V27: 0.003, V28: 0.026, Amount: 11.500.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.152, V2: -0.311, V3: 1.338, V4: 0.965, V5: -1.444, V6: -0.547, V7: -0.755, V8: 0.169, V9: 1.225, V10: -0.180, V11: -0.796, V12: -0.563, V13: -2.105, V14: 0.030, V15: 0.405, V16: 0.165, V17: 0.065, V18: -0.086, V19: -0.151, V20: -0.240, V21: -0.093, V22: -0.182, V23: 0.094, V24: 0.690, V25: 0.139, V26: 0.303, V27: 0.003, V28: 0.026, Amount: 11.500.
7,774
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.555, V2: -0.848, V3: -0.116, V4: 1.459, V5: -0.676, V6: -0.605, V7: 0.553, V8: -0.114, V9: 0.018, V10: -0.003, V11: 1.020, V12: 0.360, V13: -1.596, V14: 0.815, V15: -0.493, V16: -0.173, V17: -0.184, V18: 0.236, V19: 0.042, V20: 0.413, V21: 0.213, V22: -0.067, V23: -0.408, V24: 0.531, V25: 0.621, V26: -0.337, V27: -0.064, V28: 0.059, Amount: 329.600.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.555, V2: -0.848, V3: -0.116, V4: 1.459, V5: -0.676, V6: -0.605, V7: 0.553, V8: -0.114, V9: 0.018, V10: -0.003, V11: 1.020, V12: 0.360, V13: -1.596, V14: 0.815, V15: -0.493, V16: -0.173, V17: -0.184, V18: 0.236, V19: 0.042, V20: 0.413, V21: 0.213, V22: -0.067, V23: -0.408, V24: 0.531, V25: 0.621, V26: -0.337, V27: -0.064, V28: 0.059, Amount: 329.600.
7,775
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.077, V2: 0.069, V3: -1.751, V4: 0.417, V5: 0.334, V6: -0.879, V7: 0.103, V8: -0.165, V9: 0.679, V10: -0.343, V11: -0.820, V12: -0.509, V13: -1.126, V14: -0.609, V15: 0.341, V16: 0.388, V17: 0.523, V18: -0.143, V19: 0.081, V20: -0.231, V21: -0.382, V22: -1.053, V23: 0.347, V24: 0.449, V25: -0.292, V26: 0.179, V27: -0.071, V28: -0.034, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.077, V2: 0.069, V3: -1.751, V4: 0.417, V5: 0.334, V6: -0.879, V7: 0.103, V8: -0.165, V9: 0.679, V10: -0.343, V11: -0.820, V12: -0.509, V13: -1.126, V14: -0.609, V15: 0.341, V16: 0.388, V17: 0.523, V18: -0.143, V19: 0.081, V20: -0.231, V21: -0.382, V22: -1.053, V23: 0.347, V24: 0.449, V25: -0.292, V26: 0.179, V27: -0.071, V28: -0.034, Amount: 1.980.
7,776
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.375, V2: -0.653, V3: 0.646, V4: -0.556, V5: -1.557, V6: -1.311, V7: -0.740, V8: -0.046, V9: -0.338, V10: 0.698, V11: -0.406, V12: -2.049, V13: -2.916, V14: 0.473, V15: 1.125, V16: 1.283, V17: 0.511, V18: -1.314, V19: 0.504, V20: -0.130, V21: -0.107, V22: -0.587, V23: 0.209, V24: 0.602, V25: 0.082, V26: -0.491, V27: -0.010, V28: 0.020, Amount: 12.360.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.375, V2: -0.653, V3: 0.646, V4: -0.556, V5: -1.557, V6: -1.311, V7: -0.740, V8: -0.046, V9: -0.338, V10: 0.698, V11: -0.406, V12: -2.049, V13: -2.916, V14: 0.473, V15: 1.125, V16: 1.283, V17: 0.511, V18: -1.314, V19: 0.504, V20: -0.130, V21: -0.107, V22: -0.587, V23: 0.209, V24: 0.602, V25: 0.082, V26: -0.491, V27: -0.010, V28: 0.020, Amount: 12.360.
7,777
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.180, V2: 0.201, V3: 1.885, V4: -1.001, V5: -0.652, V6: -0.578, V7: -0.022, V8: -0.203, V9: 0.044, V10: -0.214, V11: 2.649, V12: -3.280, V13: 1.066, V14: 0.168, V15: -0.499, V16: 1.589, V17: 1.361, V18: 0.313, V19: 0.353, V20: 0.227, V21: 0.216, V22: 0.854, V23: -0.195, V24: 0.406, V25: -0.099, V26: -0.221, V27: -0.120, V28: -0.155, Amount: 39.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.180, V2: 0.201, V3: 1.885, V4: -1.001, V5: -0.652, V6: -0.578, V7: -0.022, V8: -0.203, V9: 0.044, V10: -0.214, V11: 2.649, V12: -3.280, V13: 1.066, V14: 0.168, V15: -0.499, V16: 1.589, V17: 1.361, V18: 0.313, V19: 0.353, V20: 0.227, V21: 0.216, V22: 0.854, V23: -0.195, V24: 0.406, V25: -0.099, V26: -0.221, V27: -0.120, V28: -0.155, Amount: 39.000.
7,778
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.041, V2: -0.876, V3: -1.395, V4: -0.560, V5: -0.514, V6: -0.766, V7: -0.299, V8: -0.245, V9: -0.823, V10: 1.120, V11: 0.472, V12: 0.366, V13: 0.210, V14: 0.463, V15: -0.144, V16: -1.127, V17: -0.589, V18: 1.727, V19: -0.626, V20: -0.460, V21: -0.068, V22: 0.207, V23: 0.020, V24: -0.303, V25: -0.085, V26: 0.789, V27: -0.079, V28: -0.066, Amount: 72.940.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.041, V2: -0.876, V3: -1.395, V4: -0.560, V5: -0.514, V6: -0.766, V7: -0.299, V8: -0.245, V9: -0.823, V10: 1.120, V11: 0.472, V12: 0.366, V13: 0.210, V14: 0.463, V15: -0.144, V16: -1.127, V17: -0.589, V18: 1.727, V19: -0.626, V20: -0.460, V21: -0.068, V22: 0.207, V23: 0.020, V24: -0.303, V25: -0.085, V26: 0.789, V27: -0.079, V28: -0.066, Amount: 72.940.
7,779
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.730, V2: 1.632, V3: -0.173, V4: -3.054, V5: 0.954, V6: 0.385, V7: -0.199, V8: -2.118, V9: -0.082, V10: -2.555, V11: -0.069, V12: 1.815, V13: 0.648, V14: 0.797, V15: -1.310, V16: -0.002, V17: -0.811, V18: 0.208, V19: 0.017, V20: 0.523, V21: -1.475, V22: -0.176, V23: -0.308, V24: -0.246, V25: 1.222, V26: -1.251, V27: 0.117, V28: 0.071, Amount: 0.020.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.730, V2: 1.632, V3: -0.173, V4: -3.054, V5: 0.954, V6: 0.385, V7: -0.199, V8: -2.118, V9: -0.082, V10: -2.555, V11: -0.069, V12: 1.815, V13: 0.648, V14: 0.797, V15: -1.310, V16: -0.002, V17: -0.811, V18: 0.208, V19: 0.017, V20: 0.523, V21: -1.475, V22: -0.176, V23: -0.308, V24: -0.246, V25: 1.222, V26: -1.251, V27: 0.117, V28: 0.071, Amount: 0.020.
7,780
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.994, V2: -0.448, V3: -0.254, V4: 0.473, V5: -0.794, V6: -0.521, V7: -0.645, V8: -0.058, V9: 1.259, V10: 0.005, V11: -1.095, V12: 0.370, V13: 0.278, V14: -0.291, V15: 0.345, V16: 0.354, V17: -0.540, V18: 0.027, V19: -0.214, V20: -0.177, V21: 0.154, V22: 0.673, V23: 0.144, V24: -0.049, V25: -0.259, V26: 0.575, V27: -0.019, V28: -0.048, Amount: 11.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.994, V2: -0.448, V3: -0.254, V4: 0.473, V5: -0.794, V6: -0.521, V7: -0.645, V8: -0.058, V9: 1.259, V10: 0.005, V11: -1.095, V12: 0.370, V13: 0.278, V14: -0.291, V15: 0.345, V16: 0.354, V17: -0.540, V18: 0.027, V19: -0.214, V20: -0.177, V21: 0.154, V22: 0.673, V23: 0.144, V24: -0.049, V25: -0.259, V26: 0.575, V27: -0.019, V28: -0.048, Amount: 11.490.
7,781
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.928, V2: 5.906, V3: -1.680, V4: -1.001, V5: -0.088, V6: -1.173, V7: 1.994, V8: -1.204, V9: 5.637, V10: 10.835, V11: 2.762, V12: 0.842, V13: 0.580, V14: -2.984, V15: 0.497, V16: -1.702, V17: -1.351, V18: -0.456, V19: -0.237, V20: 4.328, V21: -1.083, V22: 0.499, V23: 0.075, V24: 0.455, V25: 0.459, V26: -0.658, V27: 1.021, V28: -0.945, Amount: 0.890.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.928, V2: 5.906, V3: -1.680, V4: -1.001, V5: -0.088, V6: -1.173, V7: 1.994, V8: -1.204, V9: 5.637, V10: 10.835, V11: 2.762, V12: 0.842, V13: 0.580, V14: -2.984, V15: 0.497, V16: -1.702, V17: -1.351, V18: -0.456, V19: -0.237, V20: 4.328, V21: -1.083, V22: 0.499, V23: 0.075, V24: 0.455, V25: 0.459, V26: -0.658, V27: 1.021, V28: -0.945, Amount: 0.890.
7,782
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -2.602, V2: 2.453, V3: -1.792, V4: -0.734, V5: 0.340, V6: -0.849, V7: 0.700, V8: -0.231, V9: 1.419, V10: 2.041, V11: 1.081, V12: 0.426, V13: -0.036, V14: -1.273, V15: 0.235, V16: 0.102, V17: 0.061, V18: 1.047, V19: 0.041, V20: 0.324, V21: 0.248, V22: 0.986, V23: -0.123, V24: -0.481, V25: -0.169, V26: -0.264, V27: -0.804, V28: 0.430, Amount: 16.750.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -2.602, V2: 2.453, V3: -1.792, V4: -0.734, V5: 0.340, V6: -0.849, V7: 0.700, V8: -0.231, V9: 1.419, V10: 2.041, V11: 1.081, V12: 0.426, V13: -0.036, V14: -1.273, V15: 0.235, V16: 0.102, V17: 0.061, V18: 1.047, V19: 0.041, V20: 0.324, V21: 0.248, V22: 0.986, V23: -0.123, V24: -0.481, V25: -0.169, V26: -0.264, V27: -0.804, V28: 0.430, Amount: 16.750.
7,783
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -4.408, V2: -0.236, V3: -1.650, V4: -0.181, V5: -0.707, V6: -1.374, V7: 0.321, V8: 1.268, V9: -0.391, V10: -2.756, V11: -1.274, V12: 0.292, V13: -0.260, V14: -0.452, V15: -0.580, V16: 0.934, V17: 1.593, V18: 0.372, V19: -0.427, V20: -0.722, V21: -0.148, V22: -0.899, V23: -0.595, V24: -0.084, V25: 0.808, V26: -0.094, V27: -0.564, V28: -0.768, Amount: 120.320.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -4.408, V2: -0.236, V3: -1.650, V4: -0.181, V5: -0.707, V6: -1.374, V7: 0.321, V8: 1.268, V9: -0.391, V10: -2.756, V11: -1.274, V12: 0.292, V13: -0.260, V14: -0.452, V15: -0.580, V16: 0.934, V17: 1.593, V18: 0.372, V19: -0.427, V20: -0.722, V21: -0.148, V22: -0.899, V23: -0.595, V24: -0.084, V25: 0.808, V26: -0.094, V27: -0.564, V28: -0.768, Amount: 120.320.
7,784
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -0.869, V2: 1.110, V3: 1.058, V4: 1.378, V5: -0.077, V6: -0.057, V7: 0.201, V8: 0.554, V9: -0.425, V10: -0.324, V11: -0.810, V12: 0.206, V13: -0.311, V14: 0.387, V15: 0.210, V16: -1.086, V17: 0.814, V18: -0.607, V19: 0.716, V20: 0.072, V21: 0.023, V22: 0.226, V23: -0.078, V24: 0.092, V25: -0.073, V26: -0.222, V27: 0.303, V28: 0.116, Amount: 18.090.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -0.869, V2: 1.110, V3: 1.058, V4: 1.378, V5: -0.077, V6: -0.057, V7: 0.201, V8: 0.554, V9: -0.425, V10: -0.324, V11: -0.810, V12: 0.206, V13: -0.311, V14: 0.387, V15: 0.210, V16: -1.086, V17: 0.814, V18: -0.607, V19: 0.716, V20: 0.072, V21: 0.023, V22: 0.226, V23: -0.078, V24: 0.092, V25: -0.073, V26: -0.222, V27: 0.303, V28: 0.116, Amount: 18.090.
7,785
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -5.292, V2: 4.291, V3: -2.107, V4: 0.622, V5: -4.393, V6: -1.323, V7: -3.513, V8: 4.138, V9: -1.939, V10: -1.735, V11: -1.060, V12: 2.355, V13: 2.021, V14: 3.047, V15: 1.521, V16: 0.674, V17: 2.209, V18: -0.028, V19: 1.648, V20: -1.074, V21: 0.611, V22: -0.108, V23: 0.502, V24: 1.010, V25: -0.078, V26: 1.048, V27: -2.691, V28: -0.668, Amount: 26.020.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -5.292, V2: 4.291, V3: -2.107, V4: 0.622, V5: -4.393, V6: -1.323, V7: -3.513, V8: 4.138, V9: -1.939, V10: -1.735, V11: -1.060, V12: 2.355, V13: 2.021, V14: 3.047, V15: 1.521, V16: 0.674, V17: 2.209, V18: -0.028, V19: 1.648, V20: -1.074, V21: 0.611, V22: -0.108, V23: 0.502, V24: 1.010, V25: -0.078, V26: 1.048, V27: -2.691, V28: -0.668, Amount: 26.020.
7,786
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.322, V2: 0.137, V3: 0.515, V4: 1.141, V5: -1.263, V6: 0.508, V7: 1.885, V8: 0.228, V9: -1.116, V10: -0.950, V11: -0.216, V12: 0.771, V13: 1.560, V14: 0.375, V15: 1.166, V16: -0.354, V17: 0.106, V18: -0.288, V19: -0.053, V20: 0.919, V21: 0.439, V22: 0.497, V23: 1.016, V24: 0.060, V25: -0.210, V26: -0.413, V27: -0.071, V28: 0.139, Amount: 453.330.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.322, V2: 0.137, V3: 0.515, V4: 1.141, V5: -1.263, V6: 0.508, V7: 1.885, V8: 0.228, V9: -1.116, V10: -0.950, V11: -0.216, V12: 0.771, V13: 1.560, V14: 0.375, V15: 1.166, V16: -0.354, V17: 0.106, V18: -0.288, V19: -0.053, V20: 0.919, V21: 0.439, V22: 0.497, V23: 1.016, V24: 0.060, V25: -0.210, V26: -0.413, V27: -0.071, V28: 0.139, Amount: 453.330.
7,787
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.046, V2: -0.215, V3: -1.697, V4: 0.015, V5: 0.453, V6: -0.238, V7: -0.000, V8: -0.062, V9: 0.534, V10: 0.190, V11: 0.266, V12: 0.282, V13: -0.721, V14: 0.774, V15: 0.261, V16: 0.273, V17: -0.979, V18: 0.825, V19: 0.286, V20: -0.199, V21: 0.265, V22: 0.778, V23: -0.061, V24: 0.106, V25: 0.292, V26: -0.115, V27: -0.035, V28: -0.066, Amount: 19.950.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.046, V2: -0.215, V3: -1.697, V4: 0.015, V5: 0.453, V6: -0.238, V7: -0.000, V8: -0.062, V9: 0.534, V10: 0.190, V11: 0.266, V12: 0.282, V13: -0.721, V14: 0.774, V15: 0.261, V16: 0.273, V17: -0.979, V18: 0.825, V19: 0.286, V20: -0.199, V21: 0.265, V22: 0.778, V23: -0.061, V24: 0.106, V25: 0.292, V26: -0.115, V27: -0.035, V28: -0.066, Amount: 19.950.
7,788
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.866, V2: -0.438, V3: 1.750, V4: 1.261, V5: 1.789, V6: -1.221, V7: 0.025, V8: 0.074, V9: -0.645, V10: -0.253, V11: -0.603, V12: 0.718, V13: 1.203, V14: 0.015, V15: 0.537, V16: -0.522, V17: -0.082, V18: -0.554, V19: 0.856, V20: 0.776, V21: -0.324, V22: -1.317, V23: 0.304, V24: -0.090, V25: 0.407, V26: -0.868, V27: 0.269, V28: 0.182, Amount: 58.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.866, V2: -0.438, V3: 1.750, V4: 1.261, V5: 1.789, V6: -1.221, V7: 0.025, V8: 0.074, V9: -0.645, V10: -0.253, V11: -0.603, V12: 0.718, V13: 1.203, V14: 0.015, V15: 0.537, V16: -0.522, V17: -0.082, V18: -0.554, V19: 0.856, V20: 0.776, V21: -0.324, V22: -1.317, V23: 0.304, V24: -0.090, V25: 0.407, V26: -0.868, V27: 0.269, V28: 0.182, Amount: 58.000.
7,789
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.214, V2: -1.379, V3: 1.552, V4: -0.175, V5: -2.066, V6: 0.770, V7: -1.786, V8: 0.533, V9: 0.900, V10: 0.459, V11: -0.484, V12: 0.018, V13: -1.823, V14: -0.768, V15: -2.100, V16: -1.558, V17: 0.477, V18: 1.649, V19: 0.267, V20: -0.578, V21: -0.468, V22: -0.543, V23: 0.005, V24: 0.032, V25: 0.099, V26: 1.136, V27: 0.012, V28: 0.007, Amount: 23.510.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.214, V2: -1.379, V3: 1.552, V4: -0.175, V5: -2.066, V6: 0.770, V7: -1.786, V8: 0.533, V9: 0.900, V10: 0.459, V11: -0.484, V12: 0.018, V13: -1.823, V14: -0.768, V15: -2.100, V16: -1.558, V17: 0.477, V18: 1.649, V19: 0.267, V20: -0.578, V21: -0.468, V22: -0.543, V23: 0.005, V24: 0.032, V25: 0.099, V26: 1.136, V27: 0.012, V28: 0.007, Amount: 23.510.
7,790
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.110, V2: -0.830, V3: 0.393, V4: -1.370, V5: -0.958, V6: -0.381, V7: -0.458, V8: -0.097, V9: 1.823, V10: -1.242, V11: -0.967, V12: 1.029, V13: 1.297, V14: -0.472, V15: 1.288, V16: -0.214, V17: -0.440, V18: 0.358, V19: 0.947, V20: 0.247, V21: 0.140, V22: 0.471, V23: -0.323, V24: -0.345, V25: 0.592, V26: 0.151, V27: 0.030, V28: 0.037, Amount: 118.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.110, V2: -0.830, V3: 0.393, V4: -1.370, V5: -0.958, V6: -0.381, V7: -0.458, V8: -0.097, V9: 1.823, V10: -1.242, V11: -0.967, V12: 1.029, V13: 1.297, V14: -0.472, V15: 1.288, V16: -0.214, V17: -0.440, V18: 0.358, V19: 0.947, V20: 0.247, V21: 0.140, V22: 0.471, V23: -0.323, V24: -0.345, V25: 0.592, V26: 0.151, V27: 0.030, V28: 0.037, Amount: 118.000.
7,791
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.941, V2: 0.070, V3: -1.675, V4: 0.468, V5: 0.151, V6: -1.238, V7: 0.233, V8: -0.275, V9: 0.291, V10: -0.325, V11: 1.466, V12: 0.888, V13: 0.096, V14: -0.557, V15: 0.173, V16: 0.367, V17: 0.170, V18: 0.948, V19: -0.191, V20: -0.115, V21: 0.277, V22: 0.869, V23: -0.054, V24: 0.021, V25: 0.205, V26: -0.131, V27: -0.011, V28: -0.034, Amount: 38.210.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.941, V2: 0.070, V3: -1.675, V4: 0.468, V5: 0.151, V6: -1.238, V7: 0.233, V8: -0.275, V9: 0.291, V10: -0.325, V11: 1.466, V12: 0.888, V13: 0.096, V14: -0.557, V15: 0.173, V16: 0.367, V17: 0.170, V18: 0.948, V19: -0.191, V20: -0.115, V21: 0.277, V22: 0.869, V23: -0.054, V24: 0.021, V25: 0.205, V26: -0.131, V27: -0.011, V28: -0.034, Amount: 38.210.
7,792
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: -1.160, V2: -0.162, V3: 2.422, V4: 0.345, V5: 0.777, V6: 1.420, V7: 0.073, V8: 0.170, V9: 2.048, V10: -0.460, V11: 1.368, V12: -2.383, V13: 0.933, V14: 0.765, V15: 0.325, V16: -1.671, V17: 1.755, V18: -1.758, V19: -1.734, V20: -0.046, V21: -0.012, V22: 1.073, V23: 0.300, V24: -0.656, V25: -0.471, V26: 0.475, V27: -0.001, V28: -0.292, Amount: 29.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: -1.160, V2: -0.162, V3: 2.422, V4: 0.345, V5: 0.777, V6: 1.420, V7: 0.073, V8: 0.170, V9: 2.048, V10: -0.460, V11: 1.368, V12: -2.383, V13: 0.933, V14: 0.765, V15: 0.325, V16: -1.671, V17: 1.755, V18: -1.758, V19: -1.734, V20: -0.046, V21: -0.012, V22: 1.073, V23: 0.300, V24: -0.656, V25: -0.471, V26: 0.475, V27: -0.001, V28: -0.292, Amount: 29.990.
7,793
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.208, V2: 0.341, V3: 0.287, V4: 0.640, V5: -0.133, V6: -0.588, V7: 0.054, V8: -0.100, V9: -0.063, V10: -0.346, V11: 0.259, V12: 0.643, V13: 0.814, V14: -0.379, V15: 1.280, V16: 0.158, V17: 0.238, V18: -0.822, V19: -0.562, V20: -0.068, V21: -0.251, V22: -0.667, V23: 0.149, V24: 0.051, V25: 0.163, V26: 0.122, V27: -0.003, V28: 0.029, Amount: 4.490.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.208, V2: 0.341, V3: 0.287, V4: 0.640, V5: -0.133, V6: -0.588, V7: 0.054, V8: -0.100, V9: -0.063, V10: -0.346, V11: 0.259, V12: 0.643, V13: 0.814, V14: -0.379, V15: 1.280, V16: 0.158, V17: 0.238, V18: -0.822, V19: -0.562, V20: -0.068, V21: -0.251, V22: -0.667, V23: 0.149, V24: 0.051, V25: 0.163, V26: 0.122, V27: -0.003, V28: 0.029, Amount: 4.490.
7,794
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 2.116, V2: 0.060, V3: -1.977, V4: 0.289, V5: 0.605, V6: -0.566, V7: 0.096, V8: -0.134, V9: 0.706, V10: -0.344, V11: -1.294, V12: -0.651, V13: -0.960, V14: -0.655, V15: 0.373, V16: 0.544, V17: 0.321, V18: 0.026, V19: 0.285, V20: -0.209, V21: -0.417, V22: -1.147, V23: 0.279, V24: -0.093, V25: -0.217, V26: 0.212, V27: -0.071, V28: -0.039, Amount: 1.980.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 2.116, V2: 0.060, V3: -1.977, V4: 0.289, V5: 0.605, V6: -0.566, V7: 0.096, V8: -0.134, V9: 0.706, V10: -0.344, V11: -1.294, V12: -0.651, V13: -0.960, V14: -0.655, V15: 0.373, V16: 0.544, V17: 0.321, V18: 0.026, V19: 0.285, V20: -0.209, V21: -0.417, V22: -1.147, V23: 0.279, V24: -0.093, V25: -0.217, V26: 0.212, V27: -0.071, V28: -0.039, Amount: 1.980.
7,795
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.154, V2: -0.152, V3: 0.756, V4: 0.418, V5: -0.562, V6: 0.217, V7: -0.615, V8: 0.316, V9: 0.345, V10: 0.080, V11: 1.079, V12: 0.165, V13: -1.233, V14: 0.533, V15: 1.036, V16: 0.638, V17: -0.556, V18: 0.190, V19: -0.262, V20: -0.179, V21: -0.042, V22: -0.191, V23: 0.083, V24: -0.339, V25: 0.054, V26: 0.251, V27: -0.004, V28: 0.007, Amount: 8.990.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.154, V2: -0.152, V3: 0.756, V4: 0.418, V5: -0.562, V6: 0.217, V7: -0.615, V8: 0.316, V9: 0.345, V10: 0.080, V11: 1.079, V12: 0.165, V13: -1.233, V14: 0.533, V15: 1.036, V16: 0.638, V17: -0.556, V18: 0.190, V19: -0.262, V20: -0.179, V21: -0.042, V22: -0.191, V23: 0.083, V24: -0.339, V25: 0.054, V26: 0.251, V27: -0.004, V28: 0.007, Amount: 8.990.
7,796
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.375, V2: -3.872, V3: -4.972, V4: -1.177, V5: 1.682, V6: 2.934, V7: 1.167, V8: 0.136, V9: -1.333, V10: 0.498, V11: 0.072, V12: -0.603, V13: -0.062, V14: 0.855, V15: -0.002, V16: 0.111, V17: 0.496, V18: -1.691, V19: 0.309, V20: 2.017, V21: 1.075, V22: 0.829, V23: -1.061, V24: 0.857, V25: 0.440, V26: 0.215, V27: -0.263, V28: 0.073, Amount: 1000.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.375, V2: -3.872, V3: -4.972, V4: -1.177, V5: 1.682, V6: 2.934, V7: 1.167, V8: 0.136, V9: -1.333, V10: 0.498, V11: 0.072, V12: -0.603, V13: -0.062, V14: 0.855, V15: -0.002, V16: 0.111, V17: 0.496, V18: -1.691, V19: 0.309, V20: 2.017, V21: 1.075, V22: 0.829, V23: -1.061, V24: 0.857, V25: 0.440, V26: 0.215, V27: -0.263, V28: 0.073, Amount: 1000.000.
7,797
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.760, V2: -0.623, V3: -0.607, V4: 1.285, V5: -0.502, V6: -0.024, V7: -0.491, V8: 0.105, V9: 1.142, V10: 0.213, V11: -1.408, V12: -0.727, V13: -1.439, V14: 0.326, V15: 1.029, V16: 0.639, V17: -0.792, V18: 0.672, V19: -0.699, V20: -0.084, V21: 0.256, V22: 0.518, V23: 0.067, V24: 0.521, V25: -0.140, V26: -0.592, V27: 0.019, V28: -0.008, Amount: 121.000.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.760, V2: -0.623, V3: -0.607, V4: 1.285, V5: -0.502, V6: -0.024, V7: -0.491, V8: 0.105, V9: 1.142, V10: 0.213, V11: -1.408, V12: -0.727, V13: -1.439, V14: 0.326, V15: 1.029, V16: 0.639, V17: -0.792, V18: 0.672, V19: -0.699, V20: -0.084, V21: 0.256, V22: 0.518, V23: 0.067, V24: 0.521, V25: -0.140, V26: -0.592, V27: 0.019, V28: -0.008, Amount: 121.000.
7,798
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 1.189, V2: 0.578, V3: 0.838, V4: 2.824, V5: 0.064, V6: 0.211, V7: -0.073, V8: -0.130, V9: 0.939, V10: 0.112, V11: -0.306, V12: -1.851, V13: 2.827, V14: 0.976, V15: -1.732, V16: 0.154, V17: 0.334, V18: -0.235, V19: -0.641, V20: -0.119, V21: -0.247, V22: -0.217, V23: -0.147, V24: -0.129, V25: 0.708, V26: 0.066, V27: -0.011, V28: 0.012, Amount: 7.810.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 1.189, V2: 0.578, V3: 0.838, V4: 2.824, V5: 0.064, V6: 0.211, V7: -0.073, V8: -0.130, V9: 0.939, V10: 0.112, V11: -0.306, V12: -1.851, V13: 2.827, V14: 0.976, V15: -1.732, V16: 0.154, V17: 0.334, V18: -0.235, V19: -0.641, V20: -0.119, V21: -0.247, V22: -0.217, V23: -0.147, V24: -0.129, V25: 0.708, V26: 0.066, V27: -0.011, V28: 0.012, Amount: 7.810.
7,799
Detect the credit card fraud using the following financial table attributes. Respond with only 'yes' or 'no', and do not provide any additional information. Therein, the data contains 28 numerical input variables V1, V2, ..., and V28 which are the result of a PCA transformation and 1 input variable Amount which has not been transformed with PCA. The feature 'Amount' is the transaction Amount, this feature can be used for example-dependant cost-sensitive learning. For instance, 'The client has attributes: V1: 0.144, V2: 0.358, V3: 1.220, V4: 0.331, V5: -0.273, V6: 0.429, V7: -0.307, V8: -0.577, V9: 0.116, V10: -0.337, V11: 1.016, V12: 1.043, V13: -0.527, V14: 0.160, V15: -0.951, V16: -0.452, V17: 0.166, V18: -0.446, V19: 0.036, V20: -0.275, V21: 0.768, V22: -0.051, V23: -0.180, V24: 0.067, V25: 0.741, V26: 0.477, V27: 0.152, V28: 0.201, Amount: 6.990.' should be classified as 'no'. Text: 'The client has attributes: V1: 0.062, V2: 1.027, V3: 0.390, V4: 2.831, V5: 1.275, V6: 1.073, V7: 0.795, V8: 0.286, V9: -1.254, V10: 0.822, V11: -0.780, V12: -0.163, V13: -1.002, V14: -0.014, V15: -3.390, V16: 0.431, V17: -0.714, V18: 0.155, V19: -0.839, V20: -0.256, V21: 0.143, V22: 0.519, V23: -0.229, V24: 0.271, V25: 0.123, V26: 0.093, V27: -0.004, V28: -0.013, Amount: 18.920.' Answer:
no
[ "no", "yes" ]
0
The client has attributes: V1: 0.062, V2: 1.027, V3: 0.390, V4: 2.831, V5: 1.275, V6: 1.073, V7: 0.795, V8: 0.286, V9: -1.254, V10: 0.822, V11: -0.780, V12: -0.163, V13: -1.002, V14: -0.014, V15: -3.390, V16: 0.431, V17: -0.714, V18: 0.155, V19: -0.839, V20: -0.256, V21: 0.143, V22: 0.519, V23: -0.229, V24: 0.271, V25: 0.123, V26: 0.093, V27: -0.004, V28: -0.013, Amount: 18.920.