unique_id
stringlengths
36
36
Shift Name
stringclasses
10 values
Subject
stringclasses
1 value
Question Number
int64
1
25
Question Text
stringlengths
57
738
Correct Option
int64
1
17.3k
6a784d07-5204-4c1c-878d-1b5058eb9c9c
JEE Main 2025 (28 Jan Shift 2)
Mathematics
1
Let \( A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \) and \( P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta \geq 0. \) If \( B = PAP^T, C = P^TB^TP \) and the sum of the diagonal elements of \( C \) is \( \frac{m}{n} \), where \( \gcd(m, n) = 1 \), then \( m + n \) is: (1) 127 (2) 258 (3) 65 (4) 2049
3
f165565c-7d21-4031-8cec-9f41449f2a39
JEE Main 2025 (28 Jan Shift 2)
Mathematics
2
If the components of \( \vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \) along and perpendicular to \( \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \) respectively, are \( \frac{16}{10}(3\hat{i} + \hat{j} - \hat{k}) \) and \( \frac{1}{10}(-4\hat{i} - 5\hat{j} - 17\hat{k}) \), then \( \alpha^2 + \beta^2 + \gamma^2 \) is equal to: (1) 26 (2) 18 (3) 23 (4) 16
1
843fe6c2-b6ac-477f-b561-a71dd5df3469
JEE Main 2025 (28 Jan Shift 2)
Mathematics
3
Let \( A, B, C \) be three points in \( xy \)-plane, whose position vectors are given by \( \sqrt{3}\hat{i} + \hat{j} + \sqrt{3}\hat{j} \) and \( \hat{i} + (1 - a)\hat{j} \) respectively with respect to the origin \( O \). If the distance of the point \( C \) from the line bisecting the angle between the vectors \( \overrightarrow{OA} \) and \( \overrightarrow{OB} \) is \( \frac{a}{\sqrt{2}} \), then the sum of all the possible values of \( a \) is: (1) 2 (2) 9/2 (3) 1 (4) 0
3
3f46fd12-9c19-49e9-aebd-3fc5ecc67139
JEE Main 2025 (28 Jan Shift 2)
Mathematics
4
Let the coefficients of three consecutive terms \( T_r, T_{r+1}, \) and \( T_{r+2} \) in the binomial expansion of \( (a + b)^{\frac{1}{2}} \) be in a G.P. and let \( p \) be the number of all possible values of \( r \). Let \( q \) be the sum of all rational terms in the binomial expansion of \( (\sqrt{3} + \sqrt{4})^{\frac{1}{2}} \). Then \( p + q \) is equal to: (1) 283 (2) 287 (3) 295 (4) 299
1
56cce03c-cae5-4480-ae4e-2ca17508e9aa
JEE Main 2025 (28 Jan Shift 2)
Mathematics
5
Let \( [x] \) denote the greatest integer less than or equal to \( x \). Then the domain of \( f(x) = \sec^{-1}(2[x] + 1) \) is: (1) \( (-\infty, -1] \cup [0, \infty) \) (2) \( (-\infty, -1] \cup [1, \infty) \) (3) \( (-\infty, \infty) \) (4) \( (-\infty, \infty) \) \( \setminus \{0\} \)
3
2470b736-8780-4e71-8c6a-ca9e0fcd4a1f
JEE Main 2025 (28 Jan Shift 2)
Mathematics
6
Let \( S \) be the set of all the words that can be formed by arranging all the letters of the word GARDEN. From the set \( S \), one word is selected at random. The probability that the selected word will NOT have vowels in alphabetical order is: (1) \( \frac{1}{2} \) (2) \( \frac{1}{4} \) (3) \( \frac{3}{5} \) (4) \( \frac{1}{5} \)
1
2459077d-12c1-45e7-83ae-c1d6ea3ab06e
JEE Main 2025 (28 Jan Shift 2)
Mathematics
7
If \( \sum_{r=1}^{15} \frac{1}{\sin\left(\frac{r}{2} + \frac{1}{2}\right) \sin\left(\frac{r}{2} + \frac{3}{2}\right)} \) = \( a\sqrt{3} + b \), \( a, b \in \mathbb{Z} \), then \( a^2 + b^2 \) is equal to: (1) 10 (2) 4 (3) 2 (4) 8
4
948355f4-6765-49f3-86c3-51028dee123e
JEE Main 2025 (28 Jan Shift 2)
Mathematics
8
Let \( f \) be a real valued continuous function defined on the positive real axis such that \( g(x) = \int_0^x t f(t) \, dt \). If \( g(x^2) = x^6 + x^7 \), then value of \( \sum_{r=1}^{15} f(x^3) \) is: (1) 270 (2) 340 (3) 320 (4) 310
4
98f67cfb-1e05-4e92-bb4c-49fdebf46689
JEE Main 2025 (28 Jan Shift 2)
Mathematics
9
Let \( f : [0, 3] \rightarrow A \) be defined by \( f(x) = 2x^3 - 15x^2 + 36x + 7 \) and \( g : [0, \infty) \rightarrow B \) be defined by \( g(x) = \frac{x^{2025}}{x^{2025} + 1} \). If both the functions are onto and \( S = \{ x \in \mathbb{Z} : x \in A \text{ or } x \in B \} \), then \( n(S) \) is equal to:(1) 29 (2) 30 (3) 31 (4) 36
2
7af307a7-d2ac-4ef8-b48f-a2e6059c95d4
JEE Main 2025 (28 Jan Shift 2)
Mathematics
10
Bag $B_1$ contains 6 white and 4 blue balls, Bag $B_2$ contains 4 white and 6 blue balls, and Bag $B_3$ contains 5 white and 5 blue balls. One of the bags is selected at random and a ball is drawn from it. If the ball is white, then the probability, that the ball is drawn from Bag $B_2$, is: (1) $\frac{4}{15}$ (2) $\frac{1}{3}$ (3) $\frac{2}{5}$ (4) $\frac{4}{5}$
1
8b5b6bb0-7a08-49a4-af8b-3fea283b05bd
JEE Main 2025 (28 Jan Shift 2)
Mathematics
11
Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function such that $f(2) = 1$. If $F(x) = xf(x)$ for all $x \in \mathbb{R}$, $\int_{x}^{2} x F'(x)\,dx = 6$ and $\int_{x}^{2} x^2 F''(x)\,dx = 40$, then $F'(2) + \int_{x}^{2} F(x)\,dx$ is equal to: (1) 11 (2) 13 (3) 15 (4) 9
1
33f5a9c1-f95c-4b38-b86d-9636f14834e2
JEE Main 2025 (28 Jan Shift 2)
Mathematics
12
For positive integers $n$, if $4a_n = (n^2 + 5n + 6)$ and $S_n = \sum_{k=1}^{n} \left( \frac{1}{ak} \right)$, then the value of $507S_{2025}$ is: (1) 540 (2) 675 (3) 1350 (4) 135
2
6a8fac3c-20ca-4da7-be4b-00fdf3d812a1
JEE Main 2025 (28 Jan Shift 2)
Mathematics
13
Let $f : \mathbb{R} \setminus \{0\} \to (-\infty, 1)$ be a polynomial of degree 2, satisfying $f(x) f\left( \frac{1}{x} \right) = f(x) + f\left( \frac{1}{x} \right)$. If $f(K) = -2K$, then the sum of squares of all possible values of $K$ is: (1) 7 (2) 6 (3) 1 (4) 9
2
a1f3abd3-97f9-4a96-8965-6bddf9ac8b33
JEE Main 2025 (28 Jan Shift 2)
Mathematics
14
If $A$ and $B$ are the points of intersection of the circle $x^2 + y^2 - 8x = 0$ and the hyperbola $\frac{x^2}{y^2} - \frac{y^2}{x^2} = 1$ and a point $P$ moves on the line $2x - 3y + 4 = 0$, then the centroid of $\triangle PAB$ lies on the line: (1) $x + 9y = 36$ (2) $4x - 9y = 12$ (3) $6x - 9y = 20$ (4) $9x - 9y = 32$
3
b9a37e33-f873-4d50-b919-9864d6fcfec7
JEE Main 2025 (28 Jan Shift 2)
Mathematics
15
If $f(x) = \int_{\frac{1}{x}}^{x^{1/4}(1+x^{1/4})} \frac{1}{dx}$, $f(0) = -6$, then $f(1)$ is equal to: (1) $4 \log_e 2 - 2$ (2) $2 - \log_e x$ (3) $\log_e 2 + 2$ (4) $4 \log_e 2 + 2$
1
3b235e61-18ba-47aa-a627-bf5a37bdb464
JEE Main 2025 (28 Jan Shift 2)
Mathematics
16
The area of the region bounded by the curves $x \left( 1 + y^2 \right) = 1$ and $y^2 = 2x$ is: (1) $2 \left( \frac{\pi}{2} - \frac{1}{3} \right)$ (2) $\frac{\pi}{2} - \frac{1}{3}$ (3) $\frac{\pi}{2} - \frac{1}{3}$ (4) $\frac{1}{3} \left( \frac{\pi}{2} - \frac{1}{3} \right)$
2
a94bc062-64c8-4846-a7f8-6ceb620ae4ee
JEE Main 2025 (28 Jan Shift 2)
Mathematics
17
The square of the distance of the point $\left( \frac{15}{7}, \frac{22}{7}, 7 \right)$ from the line $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ in the direction of the vector $\hat{i} + 4\hat{j} + 7\hat{k}$ is: (1) 54 (2) 44 (3) 41 (4) 66
4
47c8b9a2-16cc-4302-be4c-ae7c30ea8d6c
JEE Main 2025 (28 Jan Shift 2)
Mathematics
18
If the midpoint of a chord of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is $(\sqrt{2}, 4/3)$, and the length of the chord is $\frac{2\sqrt{5}}{3}$, then $\alpha$ is: (1) 20 (2) 22 (3) 18 (4) 26
2
911e6993-1f84-423b-9702-25e971cbe392
JEE Main 2025 (28 Jan Shift 2)
Mathematics
19
If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of $x^2 - (3 - 2i)x - (2i - 2) = 0$, $i = \sqrt{-1}$, then $\alpha\gamma + \beta\delta$ is equal to: (1) $-2$ (2) $6$ (3) $-6$ (4) $2$
4
1f39939e-71c6-4a74-8bea-f6c2d235d37d
JEE Main 2025 (28 Jan Shift 2)
Mathematics
20
Two equal sides of an isosceles triangle are along $-x + 2y = 4$ and $x + y = 4$. If $m$ is the slope of its third side, then the sum, of all possible distinct values of $m$, is: (1) $-2\sqrt{10}$ (2) $12$ (3) $6$ (4) $-6$
3
9e5b117e-fb2e-45ad-8e64-5c166daba7ad
JEE Main 2025 (28 Jan Shift 2)
Mathematics
21
Let $A$ and $B$ be the two points of intersection of the line $y = 5 = 0$ and the mirror image of the parabola $y^2 = 4x$ with respect to the line $x + y + 4 = 0$. If $d$ denotes the distance between $A$ and $B$, and $a$ denotes the area of $\triangle SAB$, where $S$ is the focus of the parabola $y^2 = 4x$, then the value of $(a + d)$ is
14
1957dd69-b21f-4609-ac4b-d610195a1745
JEE Main 2025 (28 Jan Shift 2)
Mathematics
22
The number of natural numbers, between 212 and 999, such that the sum of their digits is 15, is
64
7e9ca87b-0353-425d-b767-83cf4cff50f1
JEE Main 2025 (28 Jan Shift 2)
Mathematics
23
If $y = y(x)$ is the solution of the differential equation, $\sqrt{4 - x^2} \frac{dy}{dx} = \left(\sin^{-1}\left(\frac{x}{2}\right)\right)^2 - y \sin^{-1}\left(\frac{x}{2}\right)$, $-2 \leq x \leq 2$, $y(2) = \frac{x^2 - 8}{4}$, then $y(0)$ is equal to
4
e8d84166-bcf8-4796-855c-8b642125ce9b
JEE Main 2025 (28 Jan Shift 2)
Mathematics
24
The interior angles of a polygon with $n$ sides, are in an A.P. with common difference $6^\circ$. If the largest interior angle of the polygon is $219^\circ$, then $n$ is equal to
20
45a8920f-53e0-4308-ba55-52e6797819cf
JEE Main 2025 (28 Jan Shift 2)
Mathematics
25
Let $f(x) = \lim_{x \to \infty} \sum_{r=0}^{n} \left(\frac{\tan(x/2^{r+1}) + \tan^2(x/2^{r+1})}{1 - \tan^2(x/2^{r+1})}\right)$. Then $\lim_{x \to 0} \frac{x - e^{-f(x)}}{x - f(x)}$ is equal to
1
87886fd7-10e5-4ed6-acb0-e2f288266f84
JEE Main 2025 (29 Jan Shift 1)
Mathematics
1
Let \( x_1, x_2, \ldots, x_{10} \) be ten observations such that \( \sum_{i=1}^{10} (x_i - 2) = 30, \) \( \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \beta > 2, \) and their variance is \( \frac{4}{5}. \) If \( \mu \) and \( \sigma^2 \) are respectively the mean and the variance of \( 2(x_1 - 1) + 4\beta, \) \( 2(x_2 - 1) + 4\beta, \ldots, 2(x_{10} - 1) + 4\beta, \) then \( \frac{\partial \mu}{\partial \beta} \) is equal to: (1) 100 (2) 120 (3) 110 (4) 90
1
4a3af956-2936-4814-a7c5-ad78d38791b4
JEE Main 2025 (29 Jan Shift 1)
Mathematics
2
Consider an A. P. of positive integers, whose sum of the first three terms is 54 and the sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is: (1) 90 (2) 84 (3) 122 (4) 108
1
842577b9-21fa-44e9-8071-82c1a6bb6254
JEE Main 2025 (29 Jan Shift 1)
Mathematics
3
The number of solutions of the equation \( \left( \frac{9}{\sqrt{x}} - \frac{9}{\sqrt{x}} + 2 \right) \left( \frac{2}{\sqrt{x}} - \frac{7}{\sqrt{x}} + 3 \right) = 0 \) is: (1) 2 (2) 3 (3) 1 (4) 4
4
22a47813-1150-4bfb-8c1e-7779eb2311f2
JEE Main 2025 (29 Jan Shift 1)
Mathematics
4
Define a relation \( R \) on the interval \( [0, \frac{\pi}{4}] \) by \( xRy \) if and only if \( \sec^2 x - \tan^2 y = 1. \) Then \( R \) is: (1) both reflexive and transitive but not symmetric (2) an equivalence relation (3) reflexive but neither symmetric nor transitive (4) both reflexive and symmetric but not transitive
2
9abb4939-e62b-4c95-b6ae-baa8b0f237b8
JEE Main 2025 (29 Jan Shift 1)
Mathematics
5
Two parabolas have the same focus \( (4, 3) \) and their directrices are the \( x \)-axis and the \( y \)-axis, respectively. If these parabolas intersect at the points \( A \) and \( B, \) then \( (AB)^2 \) is equal to: (1) 392 (2) 384 (3) 192 (4) 96
3
d70df5b1-fbd0-4589-b004-9693965e1ff7
JEE Main 2025 (29 Jan Shift 1)
Mathematics
6
Let \( P \) be the set of seven digit numbers with sum of their digits equal to 11. If the numbers in \( P \) are formed by using the digits 1, 2 and 3 only, then the number of elements in the set \( P \) is: (1) 173 (2) 164 (3) 158 (4) 161
4
421fc75d-2e8a-492d-804b-2cb033503d1a
JEE Main 2025 (29 Jan Shift 1)
Mathematics
7
Let \( \vec{a} = \hat{i} + 2\hat{j} + \hat{k} \) and \( \vec{b} = 2\hat{i} + 7\hat{j} + 3\hat{k}. \) Let \( L_1 : \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda \vec{a}, \lambda \in \mathbb{R} \) and \( L_2 : \vec{r} = (\hat{i} + \hat{k}) + \mu \vec{b}, \mu \in \mathbb{R} \) be two lines. If the line \( L_3 \) passes through the point of intersection of \( L_1 \) and \( L_2, \) and is parallel to \( \vec{a} + \vec{b}, \) then \( L_3 \) passes through the point: (1) (5, 17, 4) (2) (2, 8, 5) (3) (8, 26, 12) (4) (-1, -1, 1)
3
b858d9a3-549d-424b-a0f5-3f33c1789778
JEE Main 2025 (29 Jan Shift 1)
Mathematics
8
Let \( \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \vec{b} = 3\hat{i} - 5\hat{j} + \hat{k} \) and \( \vec{c} \) be a vector such that \( \vec{a} \times \vec{c} = \vec{c} \times \vec{b} \) and \( (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168. \) Then the maximum value of \( |\vec{c}|^2 \) is: (1) 462 (2) 77 (3) 154 (4) 308
4
a7ad8cd4-2aac-4155-9246-182dfb07b87d
JEE Main 2025 (29 Jan Shift 1)
Mathematics
9
The integral \( 80 \int_0^\pi \left( \frac{\sin \theta + \cos \theta}{9 + 16 \sin 2\theta} \right) d\theta \) is equal to: (1) 3 \log_e 4 (2) 4 \log_e 3 (3) 6 \log_e 4 (4) 2 \log_e 3
2
9f3f478f-3e56-42e5-9b3e-6ad35534d3e1
JEE Main 2025 (29 Jan Shift 1)
Mathematics
10
Let the ellipse \( E_1 : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b \) and \( E_2 : \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1, A < B \) have same eccentricity \( \frac{1}{\sqrt{3}} \). Let the product of their lengths of latus rectums be \( \frac{32}{\sqrt{3}} \), and the distance between the foci of \( E_1 \) be 4. If \( E_1 \) and \( E_2 \) meet at \( A, B, C \) and \( D \), then the area of the quadrilateral \( ABCD \) equals: \[ \begin{align*} (1) & \quad 4\sqrt{6} \\ (2) & \quad 6\sqrt{6} \\ (3) & \quad 18\sqrt{6}/5 \\ (4) & \quad 24\sqrt{6}/5 \\ \end{align*} \]
4
b1f11888-ceb0-442f-810a-0a51a834e287
JEE Main 2025 (29 Jan Shift 1)
Mathematics
11
Let \( A = [a_{ij}] = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix} \). If \( A_{ij} \) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^{2} a_{ik}A_{jk}, 1 \leq i, j \leq 2 \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to: \[ \begin{align*} (1) & \quad 288 \\ (2) & \quad 222 \\ (3) & \quad 242 \\ (4) & \quad 262 \\ \end{align*} \]
3
3dd9de4c-0aa8-46af-be7b-f79cd0ee13e2
JEE Main 2025 (29 Jan Shift 1)
Mathematics
12
Let \( |z_1 - 8 - 2i| \leq 1 \) and \( |z_2 - 2 + 6i| \leq 2, z_1, z_2 \in \mathbb{C} \). Then the minimum value of \( |z_1 - z_2| \) is: \[ \begin{align*} (1) & \quad 13 \\ (2) & \quad 10 \\ (3) & \quad 3 \\ (4) & \quad 7 \\ \end{align*} \]
4
87d55516-470a-4c57-9713-3f320ed53247
JEE Main 2025 (29 Jan Shift 1)
Mathematics
13
Let \( L_1 : \frac{x-1}{2} = \frac{y-1}{3} = \frac{z-1}{4} \) and \( L_2 : \frac{x+1}{2} = \frac{y-2}{3} = \frac{z}{1} \) be two lines. Let \( L_3 \) be a line passing through the point \((\alpha, \beta, \gamma)\) and be perpendicular to both \( L_1 \) and \( L_2 \). If \( L_3 \) intersects \( L_1 \), then \( |5\alpha - 11\beta - 8\gamma| \) equals: \[ \begin{align*} (1) & \quad 20 \\ (2) & \quad 18 \\ (3) & \quad 25 \\ (4) & \quad 16 \\ \end{align*} \]
3
f131eebf-78ee-4273-b473-b776fb3280b4
JEE Main 2025 (29 Jan Shift 1)
Mathematics
14
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \[ f(x) = \begin{bmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 4x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 4x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 4x \end{bmatrix}, x \in \mathbb{R} \] Then \( M^4 - m^4 \) is equal to: \[ \begin{align*} (1) & \quad 1280 \\ (2) & \quad 1295 \\ (3) & \quad 1215 \\ (4) & \quad 1040 \\ \end{align*} \]
1
cbc72177-b566-4494-87df-ab52acb84bfc
JEE Main 2025 (29 Jan Shift 1)
Mathematics
15
Let \( ABC \) be a triangle formed by the lines \( 7x - 6y + 3 = 0, x + 2y - 31 = 0 \) and \( 9x - 2y - 19 = 0 \). Let the point \((h, k)\) be the image of the centroid of \( \Delta ABC \) in the line \( 3x + 6y - 53 = 0 \). Then \( h^2 + k^2 + hk \) is equal to: \[ \begin{align*} (1) & \quad 47 \\ (2) & \quad 36 \\ (3) & \quad 47 \\ (4) & \quad 40 \\ \end{align*} \]
2
68edd102-6049-4277-a9d4-e831373e20f9
JEE Main 2025 (29 Jan Shift 1)
Mathematics
16
The value of \( \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{k^4 + 4k^2 + 11k + 5}{(k+3)!} \right) \) is: \[ \begin{align*} (1) & \quad 4/3 \\ (2) & \quad 2 \\ (3) & \quad 7/3 \\ (4) & \quad 5/3 \\ \end{align*} \]
4
284e0696-65cb-4558-a145-131420581840
JEE Main 2025 (29 Jan Shift 1)
Mathematics
17
The least value of \( n \) for which the number of integral terms in the Binomial expansion of \( (\sqrt{7} + \sqrt{11})^n \) is 183, is: \[ \begin{align*} (1) & \quad 2184 \\ (2) & \quad 2196 \\ (3) & \quad 2148 \\ (4) & \quad 2172 \\ \end{align*} \]
1
7547e409-5d97-4179-9041-5f85e5a66c5e
JEE Main 2025 (29 Jan Shift 1)
Mathematics
18
Let \( y = y(x) \) be the solution of the differential equation \[ \cos x \left( \log_e (\cos x) \right)^2 dy + (\sin x - 3y \sin x \log_e (\cos x)) dx = 0, \quad x \in \left( 0, \frac{\pi}{2} \right).\] If \( y \left( \frac{\pi}{6} \right) = \frac{-1}{\log_2 2} \), then \( y \left( \frac{\pi}{8} \right) \) is equal to: \[ \begin{align*} (1) & \frac{1}{\log_2 (5) - \log_2 (4)} \\ (2) & \frac{2}{\log_2 (3) - \log_2 (4)} \\ (3) & \frac{1}{\log_2 (4) - \log_2 (3)} \\ (4) & \frac{1}{\log_2 (4)} \end{align*} \]
1
d87ae9e7-3636-4854-a874-65795666e575
JEE Main 2025 (29 Jan Shift 1)
Mathematics
19
Let the line \( x + y = 1 \) meet the circle \( x^2 + y^2 = 4 \) at the points A and B. If the line perpendicular to AB and passing through the mid point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ADBC is equal to: \[ \begin{align*} (1) & \sqrt{14} \\ (2) & 3\sqrt{7} \\ (3) & 2\sqrt{14} \\ (4) & 5\sqrt{7} \end{align*} \]
3
dd7bf750-08ca-4eee-8b1b-3aa7880e708f
JEE Main 2025 (29 Jan Shift 1)
Mathematics
20
Let the area of the region \( \{(x, y) : 2y \leq x^2 + 3, \quad y \geq |x|, \quad |y| \leq |x - 1|\} \) be A. Then \( 6A \) is equal to: \[ \begin{align*} (1) & 16 \\ (2) & 12 \\ (3) & 14 \\ (4) & 18 \end{align*} \]
3
1c2e865d-ac5b-42e3-bca5-9a6f1c08d311
JEE Main 2025 (29 Jan Shift 1)
Mathematics
21
Let \( S = \{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1}(2x + 1) \} \). Then \( \sum_{x \in S} (2x - 1)^2 \) is equal to ______.
5
162f99d2-c3c1-40b7-9898-27bf925f81b1
JEE Main 2025 (29 Jan Shift 1)
Mathematics
22
Let \( f : (0, \infty) \rightarrow \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0, \int_0^1 f(\lambda x) d\lambda = a f(x) \), \( f(1) = 1 \) and \( f(16) = \frac{1}{8} \), then \( 16 - f' \left( \frac{1}{16} \right) \) is equal to ______.
112
0b67c9d8-fb39-44a3-b259-978ebd5b5085
JEE Main 2025 (29 Jan Shift 1)
Mathematics
23
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is ______.
1,405
92a4b8da-f6bb-4de1-b0cb-e42c14b3dcd6
JEE Main 2025 (29 Jan Shift 1)
Mathematics
24
Let \( S = \{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \} \), where \( A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \). Then \( n(S) \) is equal to ______.
2
a9460d26-8af6-4c4c-9ce8-487a3c0312f2
JEE Main 2025 (29 Jan Shift 1)
Mathematics
25
Let \([t]\) be the greatest integer less than or equal to \( t \). Then the least value of \( p \in \mathbb{N} \) for which \[ \lim_{x \to \infty} \left( x \left( \left\lfloor \frac{1}{x} \right\rfloor + \left\lfloor \frac{2}{x} \right\rfloor + \cdots + \left\lfloor \frac{p}{x} \right\rfloor \right) - x^2 \left( \left\lfloor \frac{1}{x^2} \right\rfloor + \left\lfloor \frac{2}{x^2} \right\rfloor + \cdots + \left\lfloor \frac{p}{x^2} \right\rfloor \right) \right) \geq 1 \] is equal to ______.
24