unique_id
stringlengths
36
36
Shift Name
stringclasses
10 values
Subject
stringclasses
1 value
Question Number
int64
1
25
Question Text
stringlengths
57
738
Correct Option
int64
1
17.3k
4bb09cfb-2ab1-444e-bea8-964f5d829710
JEE Main 2025 (23 Jan Shift 2)
Mathematics
1
The distance of the line \( \frac{x^2}{2} = \frac{y^6}{3} = \frac{z^3}{4} \) from the point \((1, 4, 0)\) along the line \( \frac{x}{4} = \frac{y^2}{2} = \frac{z^3}{3} \) is: (1) \( \sqrt{17} \) (2) \( \sqrt{15} \) (3) \( \sqrt{14} \) (4) \( \sqrt{13} \)
3
e7f78510-f04f-4edc-ae36-a36fa1560105
JEE Main 2025 (23 Jan Shift 2)
Mathematics
2
Let \( A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\} \) and \( B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| + |y| \leq 3\} \). If \( C = \{(x, y) \in A \cap B : x = 0 \text{ or } y = 0\} \), then \( \sum_{(x, y) \in C} |x + y| \) is: (1) 15 (2) 24 (3) 18 (4) 12
4
99dc6eaa-8767-4188-ba6c-259aa4554208
JEE Main 2025 (23 Jan Shift 2)
Mathematics
3
Let \( X = \mathbb{R} \times \mathbb{R} \). Define a relation \( R \) on \( X \) as: \((a_1, b_1)R(a_2, b_2) \iff b_1 = b_2 \) Statement I : \( R \) is an equivalence relation. Statement II : For some \((a, b) \in X\), the set \( S = \{(x, y) \in X : (x, y)R(a, b)\} \) represents a line parallel to \( y = x \). In the light of the above statements, choose the correct answer from the options given below: (1) Both Statement I and Statement II are false (2) Statement I is true but Statement II is false (3) Both Statement I and Statement II are true (4) Statement I is false but Statement II is true
2
9d8b65c8-f334-4258-9396-87e8b05c040f
JEE Main 2025 (23 Jan Shift 2)
Mathematics
4
Let \( \int x^3 \sin x \, dx = g(x) + C \), where \( C \) is the constant of integration. If \( 8 \left( g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha \pi^3 + \beta \pi^2 + \gamma, \alpha, \beta, \gamma \in \mathbb{Z} \), then \( \alpha + \beta - \gamma \) equals: (1) 48 (2) 55 (3) 62 (4) 47
2
fd4b9955-e499-42a7-b307-dc01f26961e7
JEE Main 2025 (23 Jan Shift 2)
Mathematics
5
A rod of length eight units moves such that its ends \( A \) and \( B \) always lie on the lines \( x - y + 2 = 0 \) and \( y + 2 = 0 \), respectively. If the locus of the point \( P \), that divides the rod \( AB \) internally in the ratio \( 2 : 1 \) is \( 9 \left( x^2 + \alpha y^2 + \beta xy + \gamma x + 28y\right) - 76 = 0 \), then \( \alpha - \beta - \gamma \) is equal to: (1) 22 (2) 21 (3) 23 (4) 24
3
c1114f31-44a0-417b-bb0d-4021c582e91c
JEE Main 2025 (23 Jan Shift 2)
Mathematics
6
If the square of the shortest distance between the lines \( \frac{x^2}{m} = \frac{y^6}{n} = \frac{z^3}{3} \) and \( \frac{x^3}{m} = \frac{y^3}{n} = \frac{z^3}{3} \) is \( \frac{m}{n} \), where \( m, n \) are coprime numbers, then \( m + n \) is equal to: (1) 21 (2) 9 (3) 14 (4) 6
2
baf77833-80a8-4e67-be37-d8b8e6ea1c76
JEE Main 2025 (23 Jan Shift 2)
Mathematics
7
\( \lim_{x \to \infty} \frac{(2x^2-3x+5)(3x-1)^{\frac{2}{3}}}{(3x^2+5x+4)\sqrt{(3x+2)^3}} \) is equal to: (1) \( \frac{2}{3} \sqrt{e} \) (2) \( \frac{3e}{5} \) (3) \( \frac{2e}{3} \) (4) \( \frac{3e}{5} \)
3
0e467008-3d2e-4985-a888-c4c4c61ef89a
JEE Main 2025 (23 Jan Shift 2)
Mathematics
8
Let the point \( A \) divide the line segment joining the points \( P(-1,-1,2) \) and \( Q(5,5,10) \) internally in the ratio \( r : 1(r > 0) \). If \( O \) is the origin and \( \overrightarrow{OQ} \cdot \overrightarrow{OA} = \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 \) = 10, then the value of \( r \) is: (1) \( \sqrt{7} \) (2) 14 (3) 3 (4) 7
4
1e9fd5df-4e15-472f-8b30-eb508b1cd5d0
JEE Main 2025 (23 Jan Shift 2)
Mathematics
9
The length of the chord of the ellipse \( \frac{x^2}{4} + \frac{y^2}{3} = 1 \), whose mid-point is \((1, \frac{1}{2})\), is: (1) \( \frac{5}{3} \sqrt{15} \) (2) \( \frac{1}{3} \sqrt{15} \) (3) \( \frac{2}{3} \sqrt{15} \) (4) \( \sqrt{15} \)
3
f72094ad-9378-463a-8afe-101e4c1feb7c
JEE Main 2025 (23 Jan Shift 2)
Mathematics
10
The system of equations \( x + 2y + 5z = 9 \), has no solution if: (x) \( x + 5y + \lambda z = \mu \), (1) \( \lambda = 15, \mu \neq 17 \) (2) \( \lambda \neq 17, \mu = 18 \) (3) \( \lambda = 17, \mu \neq 18 \) (4) \( \lambda = 17, \mu = 18 \)
3
8767ea4d-8340-48c8-855d-b38999732170
JEE Main 2025 (23 Jan Shift 2)
Mathematics
11
Let the range of the function \[ f(x) = 6 + 16 \cos x \cdot \cos \left( \frac{x}{3} - x \right) \cdot \cos \left( \frac{x}{3} + x \right) \cdot \sin 3x \cdot \cos 6x, x \in \mathbb{R} \] be \([\alpha, \beta] \). Then the distance of the point \((\alpha, \beta)\) from the line \(3x + 4y + 12 = 0\) is: (1) 11 (2) 8 (3) 10 (4) 9
1
1c0b8f27-c697-4c95-8608-edc4eac9c44f
JEE Main 2025 (23 Jan Shift 2)
Mathematics
12
Let \( x = x(y) \) be the solution of the differential equation \[ y = \left( x - y \frac{dy}{dx} \right) \sin \left( \frac{x}{y} \right), y > 0 \text{ and } x(1) = \frac{\pi}{2} \]. Then \[ \cos(x(2)) \] is equal to: (1) \( 1 - 2(\log_2 2)^2 \) (2) \( 1 - 2(\log_2 2) \) (3) \( 2(\log_2 2)^2 - 1 \) (4) \( 2(\log_2 2)^2 - 1 \)
4
b99eecd0-86cd-4151-9d7a-05d422815525
JEE Main 2025 (23 Jan Shift 2)
Mathematics
13
A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm³/min and the thickness of the ice-cream layer decreases at the rate of \( \frac{1}{4} \) cm/min. The surface area (in cm²) of the chocolate ball (without the ice-cream layer) is: (1) 196π (2) 256π (3) 225π (4) 128π
2
fc5d4114-d3a7-440c-ab06-28e802c7e40f
JEE Main 2025 (23 Jan Shift 2)
Mathematics
14
The number of complex numbers \( z \), satisfying \(|z| = 1\) and \( |\frac{z}{2} + \frac{\bar{z}}{2}| = 1\), is: (1) 4 (2) 8 (3) 10 (4) 6
2
0c203c20-5dc4-4021-aaa0-252c32704f27
JEE Main 2025 (23 Jan Shift 2)
Mathematics
15
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix such that \[ A \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \text{ and } A \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \], then \( a_{23} \) equals: (1) -1 (2) 2 (3) 1 (4) 0
1
2760158c-5cbb-4b11-b37f-f567861c194e
JEE Main 2025 (23 Jan Shift 2)
Mathematics
16
If \( I = \int_{0}^{\pi} \frac{\sin \frac{x}{2}}{\sin \frac{x}{2} \cos \frac{x}{2}} \, dx \), then \[ I = \int_{0}^{21} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx \] equals: (1) \( \frac{x^2}{12} \) (2) \( \frac{x^2}{4} \) (3) \( \frac{x^2}{16} \) (4) \( \frac{x^2}{8} \)
3
c2ee8f45-0547-4c65-a11b-0105f122e588
JEE Main 2025 (23 Jan Shift 2)
Mathematics
17
A board has 16 squares as shown in the figure: Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is: (1) \(7/10\) (2) \(4/5\) (3) \(23/30\) (4) \(3/5\)
2
d128d6b6-a0f1-4ff4-b83f-13c828d9b444
JEE Main 2025 (23 Jan Shift 2)
Mathematics
18
Let the shortest distance from \((a, 0), a > 0\) to the parabola \(y^2 = 4x\) be 4. Then the equation of the circle passing through the point \((a, 0)\) and the focus of the parabola, and having its centre on the axis of the parabola is: (1) \(x^2 + y^2 - 10x + 9 = 0\) (2) \(x^2 + y^2 - 6x + 5 = 0\) (3) \(x^2 + y^2 - 4x + 3 = 0\) (4) \(x^2 + y^2 - 8x + 7 = 0\)
2
4a48d53e-0787-43ac-aa0c-e9efba9739d7
JEE Main 2025 (23 Jan Shift 2)
Mathematics
19
If in the expansion of \((1 + x)^p(1 - x)^q\), the coefficients of \(x\) and \(x^2\) are 1 and -2, respectively, then \(p^2 + q^2\) is equal to: (1) 18 (2) 13 (3) 8 (4) 20
2
31fb90ca-bd84-4ca9-9b71-f32add59351d
JEE Main 2025 (23 Jan Shift 2)
Mathematics
20
If the area of the region \(\{(x, y) : -1 \leq x \leq 1, 0 \leq y \leq a + e^{x+1} - e^{-x}, a > 0\}\) is \(\frac{e^{x+1} e^{x+1}}{e}\), then the value of \(a\) is: (1) 8 (2) 7 (3) 5 (4) 6
3
f3c8fe19-bd8c-4f37-9e11-2b5930e3c8c6
JEE Main 2025 (23 Jan Shift 2)
Mathematics
21
The variance of the numbers 8, 21, 34, 47, \ldots, 320 is
3
0fb44c34-5e78-4474-a9c9-44ee4d1a0246
JEE Main 2025 (23 Jan Shift 2)
Mathematics
22
The roots of the quadratic equation \(3x^2 - px + q = 0\) are 10th and 11th terms of an arithmetic progression with common difference \(\frac{\alpha}{2}\). If the sum of the first 11 terms of this arithmetic progression is 88, then \(q - 2p\) is equal to
474
c355123b-d38e-40f8-942f-38ad395686a8
JEE Main 2025 (23 Jan Shift 2)
Mathematics
23
The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is
17,280
9c014fa2-7f21-45b7-9d92-468f1b26fbdc
JEE Main 2025 (23 Jan Shift 2)
Mathematics
24
The focus of the parabola \(y^2 = 4x + 16\) is the centre of the circle \(C\) of radius 5. If the values of \(\lambda\), for which \(C\) passes through the point of intersection of the lines \(3x - y = 0\) and \(x + \lambda y = 4\), are \(\lambda_1\) and \(\lambda_2\), then \(12\lambda_1 + 29\lambda_2\) is equal to
15
25c19494-d9a2-408c-ade3-38e0a55aa8f2
JEE Main 2025 (23 Jan Shift 2)
Mathematics
25
Let \(\alpha, \beta\) be the roots of the equation \(x^2 - ax - b = 0\) with \(\text{Im}(\alpha) < \text{Im}(\beta)\). Let \(P_n = \alpha^n - \beta^n\). If \(P_3 = -5\sqrt{7}i, P_4 = -3\sqrt{7}i, P_5 = 11\sqrt{7}i\) and \(P_6 = 45\sqrt{7}i\), then \(|\alpha^4 + \beta^4|\) is equal to
31
716dfedd-e03b-472b-b096-06aa266e154c
JEE Main 2025 (24 Jan Shift 1)
Mathematics
1
Let circle $C$ be the image of $x^2 + y^2 - 2x + 4y - 4 = 0$ in the line $2x - 3y + 5 = 0$ and $A$ be the point on $C$ such that $OA$ is parallel to $x$-axis and $A$ lies on the right hand side of the centre $O$ of $C$. If $B(\alpha, \beta)$, with $\beta < 4$, lies on $C$ such that the length of the arc $AB$ is $(1/6)^{th}$ of the perimeter of $C$, then $\beta - \sqrt{3}\alpha$ is equal to (1) $3 + \sqrt{3}$ (2) $4$ (3) $4 - \sqrt{3}$ (4) $3$
2
8ea3fe25-f9be-4a1f-bda3-27f56bb14b73
JEE Main 2025 (24 Jan Shift 1)
Mathematics
2
Let in a $\triangle ABC$, the length of the side $AC$ be $6$, the vertex $B$ be $(1, 2, 3)$ and the vertices $A, C$ lie on the line $\frac{x-3}{2} = \frac{y-7}{2} = \frac{z-7}{2}$. Then the area (in sq. units) of $\triangle ABC$ is: (1) $17$ (2) $21$ (3) $56$ (4) $42$
2
2a299a1a-0c06-4a60-ac2f-6bdaa40b0fc8
JEE Main 2025 (24 Jan Shift 1)
Mathematics
3
Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{3}\right)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $(a > b)$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is (1) $\frac{1 - \sqrt{3}}{\sqrt{2}}$ (2) $\frac{3 - 2\sqrt{2}}{2\sqrt{3}}$ (3) $\frac{3 - 2\sqrt{2}}{3\sqrt{2}}$ (4) $\frac{1 - 2\sqrt{2}}{\sqrt{3}}$
2
ba619dfa-a9be-4aef-8a40-71019abd7612
JEE Main 2025 (24 Jan Shift 1)
Mathematics
4
If the system of equations $5x + \lambda y + 3z = 12$ and $100x - 47y + \mu z = 212$ has infinitely many solutions, then $\mu - 2\lambda$ is equal to (1) $57$ (2) $59$ (3) $55$ (4) $56$
1
d46a273c-4f2e-406e-8349-7ebd51134569
JEE Main 2025 (24 Jan Shift 1)
Mathematics
5
For some $n \neq 10$, let the coefficients of the $5$th, $6$th and $7$th terms in the binomial expansion of $(1 + x)^{n+4}$ be in A.P. Then the largest coefficient in the expansion of $(1 + x)^{n+4}$ is: (1) $20$ (2) $10$ (3) $35$ (4) $70$
3
1df5bc52-fb7d-4f2b-85ce-28e0f668fd1e
JEE Main 2025 (24 Jan Shift 1)
Mathematics
6
The product of all the rational roots of the equation $\left(x^2 - 9x + 11\right)^2 - (x - 4)(x - 5) = 3$, is equal to (1) $14$ (2) $21$ (3) $28$ (4) $7$
1
36122fa4-0d5f-4c76-bd83-d0725f7934a9
JEE Main 2025 (24 Jan Shift 1)
Mathematics
7
Let the line passing through the points $(-1, 2, 1)$ and parallel to the line $\frac{x+1}{2} = \frac{y+1}{3} = \frac{z-1}{3}$ intersect the line $\frac{x+2}{3} = \frac{y-3}{2} = \frac{z+4}{1}$ at the point $P$. Then the distance of $P$ from the point $Q(4, -5, 1)$ is (1) $5$ (2) $5\sqrt{5}$ (3) $5\sqrt{6}$ (4) $10$
2
9fb4b7b3-0406-4aa9-b10b-3911e5b9f686
JEE Main 2025 (24 Jan Shift 1)
Mathematics
8
Let the lines $3x - 4y - \alpha = 0$, $8x - 11y - 33 = 0$, and $2x - 3y + \lambda = 0$ be concurrent. If the image of the point $(1, 2)$ in the line $2x - 3y + \lambda = 0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha\lambda|$ is equal to (1) $84$ (2) $113$ (3) $91$ (4) $101$
3
fe6d35b5-ea23-494d-b95f-7df08f41b8a3
JEE Main 2025 (24 Jan Shift 1)
Mathematics
9
If $\alpha$ and $\beta$ are the roots of the equation $2x^2 - 3x - 2i = 0$, where $i = \sqrt{-1}$, then $16 \cdot \text{Re} \left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{5} + \beta^{5}}\right) \cdot \text{Im} \left(\frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{5} + \beta^{5}}\right)$ is equal to : (1) 441 (2) 398 (3) 312 (4) 409
1
70403eb0-a5a1-4b96-aa65-89a15344632f
JEE Main 2025 (24 Jan Shift 1)
Mathematics
10
For a statistical data \(x_1, x_2, \ldots, x_{10}\) of 10 values, a student obtained the mean as 5.5 and \(\sum_{i=1}^{10} x_i^2 = 371\). He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the corrected data is (1) 9 (2) 5 (3) 7 (4) 4
3
c826c0a1-6d4c-48c3-8879-78bd54e24c1d
JEE Main 2025 (24 Jan Shift 1)
Mathematics
11
The area of the region \(\{(x, y) : x^2 + 4x + 2 \leq y \leq |x + 2|\}\) is equal to (1) 7 (2) 5 (3) 24/5 (4) 20/3
4
0b48edf8-5c2a-437c-9ccd-a97230a90e3d
JEE Main 2025 (24 Jan Shift 1)
Mathematics
12
Let \(S_n = \frac{1}{2} + \frac{1}{9} + \frac{1}{12} + \frac{1}{21} + \ldots \) upto \(n\) terms. If the sum of the first six terms of an A.P. with first term \(-p\) and common difference \(p\) is \(\sqrt{2025} S_{2025}\), then the absolute difference between 20th and 15th terms of the A.P. is (1) 20 (2) 90 (3) 45 (4) 25
4
0eb94d01-6c3e-47e4-84b4-ea1767364fb9
JEE Main 2025 (24 Jan Shift 1)
Mathematics
13
Let \(f : R \to \{0\} \to R\) be a function such that \(f(x) = 6f\left(\frac{1}{x}\right) = \frac{35}{3x} - \frac{5}{2}\). If the limit as \(x \to 0\) \(\left(x^{\frac{1}{x}} + f(x)\right) = \beta; \alpha, \beta \in R\), then \(\alpha + 2\beta\) is equal to (1) 5 (2) 3 (3) 4 (4) 6
3
1eced83e-3ea5-474f-9a8a-033ba116a923
JEE Main 2025 (24 Jan Shift 1)
Mathematics
14
If \(I(m, n) = \int_0^1 x^{m-1}(1-x)^{n-1} \, dx, m, n > 0\), then \(I(9, 14) + I(10, 13)\) is (1) \(I(19, 27)\) (2) \(I(9, 1)\) (3) \(I(1, 13)\) (4) \(I(9, 13)\)
4
4a14b483-58b6-4bca-9bf7-426433b14c59
JEE Main 2025 (24 Jan Shift 1)
Mathematics
15
\(A\) and \(B\) alternately throw a pair of dice. \(A\) wins if he throws a sum of 5 before \(B\) throws a sum of 8, and \(B\) wins if he throws a sum of 8 before \(A\) throws a sum of 5. The probability, that \(A\) wins if \(A\) makes the first throw, is (1) \(\frac{9}{17}\) (2) \(\frac{9}{17}\) (3) \(\frac{9}{17}\) (4) \(\frac{8}{17}\)
2
0c6f607d-54d7-466d-be1c-db64fc917a2e
JEE Main 2025 (24 Jan Shift 1)
Mathematics
16
Let \(f(x) = \frac{2x^2 + 16}{2x^3 + 2x^2 + 4 + 32}\). Then the value of \(8 \left(f\left(\frac{1}{15}\right) + f\left(\frac{2}{15}\right) + \ldots + f\left(\frac{59}{15}\right)\right)\) is equal to (1) 92 (2) 118 (3) 102 (4) 108
2
a857fdf6-b070-4f2d-a94c-7f592eeb3779
JEE Main 2025 (24 Jan Shift 1)
Mathematics
17
Let \(y = y(x)\) be the solution of the differential equation \((xy - 5x^2 \sqrt{1 + x^2}) \, dx + (1 + x^2) \, dy = 0, y(0) = 0\). Then \(y(\sqrt{3})\) is equal to (1) \(\sqrt{15} \div 2\) (2) \(\frac{1}{2} \sqrt{\frac{3}{2}}\) (3) \(2\sqrt{2}\) (4) \(\sqrt{\frac{14}{3}}\)
2
74a5b313-5de1-4b42-afac-e4b11c1d75e0
JEE Main 2025 (24 Jan Shift 1)
Mathematics
18
\(\lim_{x \to 0} \csc x \left(\sqrt{2 \cos^2 x + 3 \cos x} - \sqrt{\cos^2 x + \sin x + 4}\right)\) is: (1) 0 (2) \( \frac{1}{\sqrt{15}} \) (3) \( \frac{1}{2\sqrt{5}} \) (4) \( -\frac{1}{2\sqrt{5}} \)
4
4eabea93-8e5f-433c-914f-3757e0201d82
JEE Main 2025 (24 Jan Shift 1)
Mathematics
19
Consider the region \( R = \{ (x, y) : x \leq y \leq 9 - \frac{1}{11}x^2, x \geq 0 \} \). The area, of the largest rectangle of sides parallel to the coordinate axes and inscribed in \( R \), is: (1) \( \frac{90}{11} \) (2) \( \frac{85}{11} \) (3) \( \frac{61}{12} \) (4) \( \frac{567}{121} \)
4
a093afec-18f3-4da4-ae18-f21d8f60edb8
JEE Main 2025 (24 Jan Shift 1)
Mathematics
20
Let \( \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \vec{b} = 3\hat{i} + \hat{j} - \hat{k} \) and \( \vec{c} \) be three vectors such that \( \vec{c} \) is coplanar with \( \vec{a} \) and \( \vec{b} \). If the vector \( \vec{C} \) is perpendicular to \( \vec{b} \) and \( \vec{a} \cdot \vec{c} = 5 \), then \( |\vec{c}| \) is equal to (1) \( \sqrt{\frac{11}{6}} \) (2) \( \frac{1}{3\sqrt{2}} \) (3) \( 16 \) (4) \( 18 \)
1
aa607395-f954-4395-99bd-bf683bb6e0f6
JEE Main 2025 (24 Jan Shift 1)
Mathematics
21
Let \( S = \{ p_1, p_2, \ldots, p_{10} \} \) be the set of first ten prime numbers. Let \( A = S \cup P \), where \( P \) is the set of all possible products of distinct elements of \( S \). Then the number of all ordered pairs \( (x, y), x \in S, y \in A \), such that \( x \) divides \( y \), is ______.
5,120
f5866438-d51e-4568-989c-3d999deac59e
JEE Main 2025 (24 Jan Shift 1)
Mathematics
22
If for some \( \alpha, \beta, \alpha \leq \beta, \alpha + \beta = 8 \) and \( \sec^{-2} (\tan^{-1} \alpha) + \cosec^{-2} (\cot^{-1} \beta) = 36 \), then \( \alpha^2 + \beta^2 \) is ______.
14
d29e5e0c-48f5-4303-b50d-3a8ff8eb8710
JEE Main 2025 (24 Jan Shift 1)
Mathematics
23
Let \( A \) be a \( 3 \times 3 \) matrix such that \( X^TAX = O \) for all nonzero \( 3 \times 1 \) matrices \( X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \). If \[ A = \begin{bmatrix} 1 & 4 \\ 1 & -5 \\ 4 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix} \] and \( \det(\text{adj}(2(A + 1))) = 2^\alpha 3^\beta 5^\gamma \), \( \alpha, \beta, \gamma \in N \), then \( \alpha^2 + \beta^2 + \gamma^2 \) is______.
44
7fca30a7-2f14-4248-8bf0-1b687fba8e51
JEE Main 2025 (24 Jan Shift 1)
Mathematics
24
Let \( f \) be a differentiable function such that \( 2(x + 2)^2 f(x) - 3(x + 2)^2 = 10 \int_0^x (t + 2) f(t) dt, x \geq 0. \) Then \( f(2) \) is equal to ______.
19
599bb4f3-4909-4595-9cd4-3822f2ceae1c
JEE Main 2025 (24 Jan Shift 1)
Mathematics
25
The number of 3-digit numbers, that are divisible by 2 and 3, but not divisible by 4 and 9, is______.
125
ef0e84d8-2585-4467-b206-30704260a218
JEE Main 2025 (24 Jan Shift 2)
Mathematics
1
Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways, 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group A and the remaining 3 from group B, is equal to: (1) 8750 (2) 9100 (3) 8925 (4) 8575
3
42221b8f-55a0-4bd7-a037-6e5173757fe9
JEE Main 2025 (24 Jan Shift 2)
Mathematics
2
If the system of equations $2x + \lambda y + 5z = 5$ has infinitely many solutions, then $\lambda + \mu$ is equal to: $14x + 3y + \mu z = 33$ (1) 13 (2) 10 (3) 12 (4) 11
3
6d3d3618-c7da-4b3a-8383-66b5b182ab6b
JEE Main 2025 (24 Jan Shift 2)
Mathematics
3
Let $A = \left\{ x \in (0, \pi) - \left\{ \frac{\pi}{2} \right\} : \log_{2/\pi} |\sin x| + \log_{2/\pi} |\cos x| = 2 \right\}$ and $B = \{ x \geq 0 : \sqrt{\sqrt{x} - 4} - 3\sqrt{\sqrt{x} - 2} + 6 = 0 \}$. Then $n(A \cup B)$ is equal to: (1) 4 (2) 8 (3) 6 (4) 2
2
c8897713-8999-444b-84d6-3a54ba0b823d
JEE Main 2025 (24 Jan Shift 2)
Mathematics
4
The area of the region enclosed by the curves $y = e^x$, $y = |e^x - 1|$ and y-axis is: (1) $1 - \log_e 2$ (2) $\log_e 2$ (3) $1 + \log_e 2$ (4) $2 \log_e 2 - 1$
1
35b0bdd6-4e7e-4ed5-86e3-484752574845
JEE Main 2025 (24 Jan Shift 2)
Mathematics
5
The equation of the chord, of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid-point is $(3, 1)$, is: $25x + 101y = 176$ (1) $48x + 25y = 169$ (2) $5x + 16y = 31$ (3) $4x + 122y = 134$ (4) $4x + 122y = 134$
1
f602ed0f-1b06-458b-8ca3-2bf6c12b4f42
JEE Main 2025 (24 Jan Shift 2)
Mathematics
6
Let the points $(\frac{11}{2}, \alpha)$ lie on or inside the triangle with sides $x + y = 11$, $x + 2y = 16$ and $2x + 3y = 29$. Then the product of the smallest and the largest values of $\alpha$ is equal to: (1) 44 (2) 22 (3) 33 (4) 55
3
9e392e8e-9769-4730-8c3c-be055a34abcb
JEE Main 2025 (24 Jan Shift 2)
Mathematics
7
Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f'(x) = 2x f(x) + 3$, with $f(1) = 4$. Then $2f(2)$ is equal to: (1) 39 (2) 19 (3) 29 (4) 23
1
9ea00ba8-51c4-4d92-b9fa-4f615e9937b2
JEE Main 2025 (24 Jan Shift 2)
Mathematics
8
If $7 = 5 \times 1 + \frac{1}{7} (5 + \alpha) + \frac{1}{7^2} (5 + 2\alpha) + \frac{1}{7^3} (5 + 3\alpha) + \cdots \infty$, then the value of $\alpha$ is: (1) $\frac{6}{7}$ (2) 6 (3) $\frac{1}{7}$ (4) 1
2
9f7ee42f-a422-42c0-a0cd-ff4f14da835a
JEE Main 2025 (24 Jan Shift 2)
Mathematics
9
Let $[x]$ denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function $f(x) = [x] + [x - 2]$, $-2 < x < 3$, is not continuous and not differentiable. Then $m + n$ is equal to: (1) 6 (2) 8 (3) 9 (4) 7
2
ff241288-2eaf-4e9a-8c75-5e9c5bbf48ec
JEE Main 2025 (24 Jan Shift 2)
Mathematics
10
Let $A = [a_{ij}]$ be a square matrix of order 2 with entries either 0 or 1. Let $E$ be the event that $A$ is an invertible matrix. Then the probability $P(E)$ is: (1) \( \frac{3}{16} \) (2) \( \frac{5}{8} \) (3) \( \frac{3}{8} \) (4) \( \frac{1}{8} \)
3
01a34c0e-d55e-41c9-881a-c5007a131d39
JEE Main 2025 (24 Jan Shift 2)
Mathematics
11
Let the position vectors of three vertices of a triangle be \(4\mathbf{p} + \mathbf{q} - 3\mathbf{r}, -5\mathbf{p} + \mathbf{q} + 2\mathbf{r}\) and \(2\mathbf{p} - \mathbf{q} + 2\mathbf{r}\). If the position vectors of the orthocenter and the circumcenter of the triangle are \(\frac{5\mathbf{p} + 2\mathbf{q} + 3\mathbf{r}}{14}\) and \(\alpha\mathbf{p} + \beta\mathbf{q} + \gamma\mathbf{r}\) respectively, then \(\alpha + 2\beta + 5\gamma\) is equal to: (1) 3 (2) 4 (3) 1 (4) 6
1
b8677182-5ae1-4aed-ba9a-f5b13c00f01a
JEE Main 2025 (24 Jan Shift 2)
Mathematics
12
Let \(\mathbf{a} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k}, \mathbf{b} = \mathbf{a} \times (\mathbf{i} - 2\mathbf{k})\) and \(\mathbf{c} = \mathbf{b} \times \mathbf{k}\). Then the projection of \(\mathbf{c} - 2\mathbf{j}\) on \(\mathbf{a}\) is: (1) \(2\sqrt{14}\) (2) \(\mathbf{v}\) (3) \(\sqrt{7}\) (4) \(2\sqrt{7}\)
1
92212052-fd2a-4fdb-9567-d15d7e04b3e2
JEE Main 2025 (24 Jan Shift 2)
Mathematics
13
The number of real solution(s) of the equation \(x^2 + 3x + 2 = \min\{\vert x - 3\vert, \vert x + 2\vert\}\) is: (1) 1 (2) 0 (3) 2 (4) 3
3
66422792-577f-48e3-8577-6ce01f4feeb0
JEE Main 2025 (24 Jan Shift 2)
Mathematics
14
The function \(f : (-\infty, \infty) \rightarrow (-\infty, 1), \text{ defined by } f(x) = \frac{x^2 - 2x}{x^2 + 2}\) is: (1) Neither one-one nor onto (2) Onto but not one-one (3) Both one-one and onto (4) One-one but not onto
4
8b3060d6-97c3-427e-802a-831bef7af864
JEE Main 2025 (24 Jan Shift 2)
Mathematics
15
In an arithmetic progression, if \(S_{10} = 1030\) and \(S_{12} = 57\), then \(S_{30} - S_{10}\) is equal to: (1) 525 (2) 510 (3) 515 (4) 505
3
37be8789-ed18-4591-910c-57c0774c29c8
JEE Main 2025 (24 Jan Shift 2)
Mathematics
16
Suppose \(A\) and \(B\) are the coefficients of 30th and 12th terms respectively in the binomial expansion of \((1 + x)^{2n-1}\). If \(2A = 5B\), then \(n\) is equal to: (1) 22 (2) 20 (3) 21 (4) 19
3
8999ad58-5192-4896-bbd5-131e2f36c4a7
JEE Main 2025 (24 Jan Shift 2)
Mathematics
17
Let \((2, 3)\) be the largest open interval in which the function \(f(x) = 2\log_e(x - 2) - x^2 + ax + 1\) is strictly increasing and \((b, c)\) be the largest open interval, in which the function \(g(x) = (x - 1)^3(x + 2 - a)^2\) is strictly decreasing. Then \(100(a + b - c)\) is equal to: (1) 420 (2) 360 (3) 160 (4) 280
2
5dc239df-f2e9-4f64-956d-7cf33138be50
JEE Main 2025 (24 Jan Shift 2)
Mathematics
18
For some \(a, b\), let \(f(x) = \frac{a + \sin x}{x} \begin{vmatrix} 1 & 1 & b \\ a & 1 + \sin x & b \\ a & 1 & b + \sin x \end{vmatrix}, x \neq 0, \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b\). Then \((\lambda + \mu + \nu)^2\) is equal to: (1) 16 (2) 25 (3) 9 (4) 36
1
3df5204a-ffbf-4d19-980a-8e2fb65f7d87
JEE Main 2025 (24 Jan Shift 2)
Mathematics
19
If the equation of the parabola with vertex \(V\left(\frac{3}{2}, 3\right)\) and the directrix \(x + 2y = 0\) is \(\alpha x^2 + \beta y^2 - \gamma xy - 30x - 60y + 225 = 0\), then \(\alpha + \beta + \gamma\) is equal to: (1) 7 (2) 9 (3) 8 (4) 6 \(\alpha x^2 + \beta y^2 - \gamma xy - 30x - 60y + 225 = 0\)
2
fb786c03-50bb-45a1-8a07-5ba97cb76d37
JEE Main 2025 (24 Jan Shift 2)
Mathematics
20
If $\alpha > \beta > \gamma > 0$, then the expression $\cot^{-1} \left\{ \beta + \frac{(1+\beta^2)}{(\alpha-\beta)} \right\} + \cot^{-1} \left\{ \gamma + \frac{(1+\gamma^2)}{(\beta-\gamma)} \right\} + \cot^{-1} \left\{ \alpha + \frac{(1+\alpha^2)}{(\gamma-\alpha)} \right\}$ is equal to: (1) $\pi$ (2) 0 (3) $\pi - (\alpha + \beta + \gamma)$ (4) $3\pi$
1
9b4a5341-8d99-48ab-9a32-ddf854a5b148
JEE Main 2025 (24 Jan Shift 2)
Mathematics
21
Let $P$ be the image of the point $Q(7, -2, 5)$ in the line $L : \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ and $R(5, p, q)$ be a point on $L$. Then the square of the area of $\triangle PQR$ is ________.
957
d4ee3e0f-52dd-4c48-802d-7ebfc9b8846e
JEE Main 2025 (24 Jan Shift 2)
Mathematics
22
If $\int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \, dx = x\sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e |x + \frac{1}{2} + \sqrt{x^2 + x + 1}| + C$, where $C$ is the constant of integration, then $\alpha + 2\beta$ is equal to ________.
16
46d3b2e8-b00d-42e1-ac03-81431e08fd4a
JEE Main 2025 (24 Jan Shift 2)
Mathematics
23
Let $y = y(x)$ be the solution of the differential equation $2 \cos x \frac{dy}{dx} = \sin 2x - 4y \sin x$, $x \in (0, \frac{\pi}{2})$. If $y \left( \frac{\pi}{4} \right) = 0$, then $y' \left( \frac{\pi}{4} \right) + y \left( \frac{\pi}{4} \right)$ is equal to ________.
1
e9b2988b-7ac7-4528-a0e5-fa70df795c0b
JEE Main 2025 (24 Jan Shift 2)
Mathematics
24
Number of functions $f : \{1, 2, \ldots, 100\} \rightarrow \{0, 1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to ________.
392
984ecf93-7530-44c2-b9fc-40badc1010a5
JEE Main 2025 (24 Jan Shift 2)
Mathematics
25
Let $H_1 : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2 : -\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ be two hyperbolas having length of latus rectums $15\sqrt{2}$ and $12\sqrt{5}$ respectively. Let their eccentricities be $e_1 = \sqrt{\frac{5}{2}}$ and $e_2$ respectively. If the product of the lengths of their transverse axes is $100\sqrt{10}$, then $25e_2^2$ is equal to ________.
55
f0c34e35-de11-40b6-b844-4aceda9c9c64
JEE Main 2025 (28 Jan Shift 1)
Mathematics
1
Let \( O \) be the origin, the point \( A \) be \( z_1 = \sqrt{3} + 2\sqrt{2}i \), the point \( B(z_2) \) be such that \( \sqrt{3} |z_2| = |z_1| \) and \( \arg(z_2) = \arg(z_1) + \frac{\pi}{6} \). Then (1) area of triangle ABO is \( \frac{11}{3} \) (2) ABO is an obtuse angled isosceles triangle (3) area of triangle ABO is \( \frac{11}{4} \) (4) ABO is a scalene triangle
2
386008a7-9f2d-417a-bc5e-9da6c7c9c48a
JEE Main 2025 (28 Jan Shift 1)
Mathematics
2
Let \( f : \mathbb{R} \to \mathbb{R} \) be a function defined by \( f(x) = (2 + 3a)x^2 + \left( \frac{2a+7}{2} \right)x + b, a \neq 1. \) If \( f(x + y) = f(x) + f(y) + 1 - \frac{1}{2}xy \), then the value of \( 28 \sum_{i=1}^{5} |f(i)| \) is (1) 545 (2) 715 (3) 735 (4) 675
4
3abb0ea3-69b6-4fe5-bc92-c24c1341f8de
JEE Main 2025 (28 Jan Shift 1)
Mathematics
3
Let \( ABCD \) be a trapezium whose vertices lie on the parabola \( y^2 = 4x \). Let the sides \( AD \) and \( BC \) of the trapezium be parallel to \( y \)-axis. If the diagonal \( AC \) is of length \( \frac{25}{4} \) and it passes through the point \( (1, 0) \), then the area of \( ABCD \) is (1) \( \frac{73}{8} \) (2) \( \frac{25}{9} \) (3) \( \frac{16}{8} \) (4) \( \frac{75}{8} \)
1
ce69f97f-67ad-4564-96b5-d19b006f6e1b
JEE Main 2025 (28 Jan Shift 1)
Mathematics
4
The sum of all local minimum values of the function \[ f(x) = \begin{cases} 1 - 2x, & x < -1 \\ \frac{1}{3}(7 + 2|x|), & -1 \leq x \leq 2 \\ \frac{1}{12}(x - 4)(x - 5), & x > 2 \end{cases} \] is (1) \( \frac{137}{72} \) (2) \( \frac{131}{72} \) (3) \( \frac{137}{72} \) (4) \( \frac{167}{72} \)
1
7a54308e-bc39-4255-b8dc-4b50afb12022
JEE Main 2025 (28 Jan Shift 1)
Mathematics
5
Let \( ^nC_{r-1} = 28, ^nC_r = 56 \) and \( ^nC_{r+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \) and \( C(3r - n, r^2 - n - 1) \) be the vertices of a triangle \( ABC \), where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \), is the locus of the centroid of triangle \( ABC \), then \( \alpha \) equals (1) 6 (2) 18 (3) 8 (4) 20
4
bf5f71d9-d0bb-4ce3-b1a3-bf2218c08673
JEE Main 2025 (28 Jan Shift 1)
Mathematics
6
Let the equation of the circle, which touches \( x \)-axis at the point \( (a, 0) \), \( a > 0 \) and cuts off an intercept of length \( b \) on \( y \)-axis be \( x^2 + y^2 - \alpha x + \beta y + \gamma = 0 \). If the circle lies below \( x \)-axis, then the ordered pair \((2a, b^2)\) is equal to (1) \( (\gamma, \beta^2 - 4\alpha) \) (2) \( (\alpha, \beta^2 + 4\gamma) \) (3) \( (\gamma, \beta^2 + 4\alpha) \) (4) \( (\alpha, \beta^2 - 4\gamma) \)
4
fcb2d563-8ac4-452f-be89-ce259c8146c1
JEE Main 2025 (28 Jan Shift 1)
Mathematics
7
If \( f(x) = \frac{x^2}{2x^2 + \sqrt{2}}, x \in \mathbb{R}, \) then \( \sum_{k=1}^{81} f \left( \frac{k}{82} \right) \) is equal to (1) \( 1.81\sqrt{2} \) (2) \( 41 \) (3) \( 82 \) (4) \( \frac{81}{2} \)
4
d323f007-a281-4f15-8c52-e3b78f1b9fb8
JEE Main 2025 (28 Jan Shift 1)
Mathematics
8
Two number \( k_1 \) and \( k_2 \) are randomly chosen from the set of natural numbers. Then, the probability that the value of \( i^{k_1} + j^{k_2}, (i = \sqrt{-1}) \) is non-zero, equals:(1) \( \frac{1}{2} \) (2) \( \frac{3}{4} \) (3) \( \frac{1}{7} \) (4) \( \frac{2}{3} \)
2
2400477c-a743-4733-95d2-a4f76884f8f5
JEE Main 2025 (28 Jan Shift 1)
Mathematics
9
If the image of the point \((4, 4, 3)\) in the line \(\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-1}{3}\) is \((\alpha, \beta, \gamma)\), then \(\alpha + \beta + \gamma\) is equal to \[(1)\ 9 \quad (2)\ 12 \quad (3)\ 7 \quad (4)\ 8. \]
1
13d54bd0-0372-4112-a983-0f35933d161b
JEE Main 2025 (28 Jan Shift 1)
Mathematics
10
\(\cos \left( \sin^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{33}{65} \right)\) is equal to: \[(1)\ 1 \quad (2)\ 0 \quad (3)\ \frac{32}{65} \quad (4)\ \frac{33}{65}. \]
2
669b1282-46df-4444-b097-abc0e94d1c6f
JEE Main 2025 (28 Jan Shift 1)
Mathematics
11
Let \(A(x, y, z)\) be a point in \(xy\)-plane, which is equidistant from three points \((0, 3, 2), (2, 0, 3)\) and \((0, 0, 1)\). Let \(B = (1, 4, -1)\) and \(C = (2, 0, -2)\). Then among the statements (S1) : \(\triangle ABC\) is an isosceles right angled triangle, and (S2) : the area of \(\triangle ABC\) is \(\frac{9\sqrt{2}}{2}\), \[(1)\ \text{both are true} \quad (2)\ \text{only (S2) is true} \quad (3)\ \text{only (S1) is true} \quad (4)\ \text{both are false}. \]
3
e8e525f0-719e-4737-b196-ec4c9442a18e
JEE Main 2025 (28 Jan Shift 1)
Mathematics
12
The area (in sq. units) of the region \(\{ (x, y) : 0 \leq y \leq 2|x| + 1, 0 \leq y \leq x^2 + 1, |x| \leq 3 \}\) is \[(1)\ \frac{80}{3} \quad (2)\ \frac{44}{3} \quad (3)\ \frac{32}{3} \quad (4)\ \frac{17}{3}. \]
2
3c8d4be8-c367-4856-bdc1-bfe37e60d677
JEE Main 2025 (28 Jan Shift 1)
Mathematics
13
The sum of the squares of all the roots of the equation \(x^2 + |2x - 3| - 4 = 0\), is \[(1)\ 3(3 - \sqrt{2}) \quad (2)\ 6(3 - \sqrt{2}) \quad (3)\ 6(2 - \sqrt{2}) \quad (4)\ 3(2 - \sqrt{2}) \]
3
577660f5-d79b-4d00-9af8-d50b7849743f
JEE Main 2025 (28 Jan Shift 1)
Mathematics
14
Let \(T_r\) be the \(r^{th}\) term of an A.P. If for some \(m, T_m = \frac{1}{25}, T_{25} = \frac{1}{25}\), and \(20 \sum_{r=1}^{25} T_r = 13\), then \(5m \sum_{r=m}^{m+2} T_r\) is equal to \[(1)\ 98 \quad (2)\ 126 \quad (3)\ 142 \quad (4)\ 112. \]
2
d688540d-d072-44a1-b481-a459af38593f
JEE Main 2025 (28 Jan Shift 1)
Mathematics
15
Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If \(x\) denote the number of defective oranges, then the variance of \(x\) is \[(1)\ \frac{28}{75} \quad (2)\ \frac{18}{25} \quad (3)\ \frac{26}{75} \quad (4)\ \frac{14}{25}. \]
1
403a27b0-6d1e-49c4-924d-8722f6a2915f
JEE Main 2025 (28 Jan Shift 1)
Mathematics
16
Let for some function \(y = f(x), \int_0^x tf(t) dt = x^2 f(x), x > 0\) and \(f(2) = 3\). Then \(f(6)\) is equal to \[(1)\ 1 \quad (2)\ 3 \quad (3)\ 6 \quad (4)\ 2. \]
1
f15c71bb-d3e0-42f2-b7da-a93f795013ef
JEE Main 2025 (28 Jan Shift 1)
Mathematics
17
If \(\int \frac{9x^2 \cos \pi x}{(1 + x^2)^2} dx = \pi (\alpha x^2 + \beta), \alpha, \beta \in \mathbb{Z}\), then \((\alpha + \beta)^2\) equals \[(1)\ 64 \quad (2)\ 196 \quad (3)\ 144 \quad (4)\ 100. \]
4
bec8e309-4e7f-4767-9f29-a2c36dac2786
JEE Main 2025 (28 Jan Shift 1)
Mathematics
18
Let \(\{a_n\}\) be a sequence such that \(a_0 = 0, a_1 = \frac{1}{2}\) and \(2a_{n+2} = 5a_{n+1} - 3a_n, n = 0, 1, 2, 3, \ldots\). Then \(\sum_{k=1}^{100} a_k\) is equal to : (1) \( 3a_{99} - 100 \) (2) \( 3a_{100} + 100 \) (3) \( 3a_{99} + 100 \) (4) \( 3a_{100} - 100 \)
2
4dfa6e24-a0d7-4203-b672-58d09c63870b
JEE Main 2025 (28 Jan Shift 1)
Mathematics
19
The number of different 5 digit numbers greater than 50000 that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, such that the sum of their first and last digits should not be more than 8, is (1) 4608 (2) 5720 (3) 5719 (4) 4607
4
01291000-d3a5-41f5-aac9-1a90237dadf5
JEE Main 2025 (28 Jan Shift 1)
Mathematics
20
The relation \( R = \{ (x, y) : x, y \in \mathbb{Z} \text{ and } x + y \text{ is even} \} \) is: (1) reflexive and symmetric but not transitive (2) an equivalence relation (3) symmetric and transitive but not reflexive (4) reflexive and transitive but not symmetric
2
5df8a224-1e66-4ab3-a733-446cb3d5df54
JEE Main 2025 (28 Jan Shift 1)
Mathematics
21
Let \( f(x) = \begin{cases} 3x, & x < 0 \\ \min\{1 + x + |x|, x + 2|x|\}, & 0 \leq x \leq 2 \text{ where } [.] \text{ denotes greatest integer function} \end{cases} \). If \( \alpha \) and \( \beta \) are the number of points, where \( f \) is not continuous and is not differentiable, respectively, then \( \alpha + \beta \) equals \( \frac{5}{2} \)
5
70401e79-9f72-4a97-9c2d-6ff0463d1a59
JEE Main 2025 (28 Jan Shift 1)
Mathematics
22
Let \( M \) denote the set of all real matrices of order \( 3 \times 3 \) and let \( S = \{ -3, -2, -1, 1, 2 \} \). Let \[ S_1 = \{ A = [a_{ij}] \in M : A = A^T \text{ and } a_{ij} \in S, \forall i, j \}, \\ S_2 = \{ A = [a_{ij}] \in M : A = -A^T \text{ and } a_{ij} \in S, \forall i, j \}, \\ S_3 = \{ A = [a_{ij}] \in M : a_{11} + a_{22} + a_{33} = 0 \text{ and } a_{ij} \in S, \forall i, j \}. \] If \( n(S_1 \cup S_2 \cup S_3) = 125\alpha \), then \( \alpha \) equals \( \frac{5}{2} \)
1,613
4141f89c-4f78-485e-a9bc-6f3ab89dc31c
JEE Main 2025 (28 Jan Shift 1)
Mathematics
23
If \( \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} 12C_{2r-1} \), then the distance of the point \( (12, \sqrt{3}) \) from the line \( \alpha x - \sqrt{3}y + 1 = 0 \) is \( \frac{5}{2} \)
5
70575064-0b51-4839-8155-1945b70779e0
JEE Main 2025 (28 Jan Shift 1)
Mathematics
24
Let \( E_1 : \frac{x^2}{3} + \frac{y^2}{4} = 1 \) be an ellipse. Ellipses \( E_i \)'s are constructed such that their centres and eccentricities are same as that of \( E_1 \), and the length of minor axis of \( E_i \) is the length of major axis of \( E_{i+1}(i \geq 1) \). If \( A_i \) is the area of the ellipse \( E_i \), then \( \frac{5}{\pi} \left( \sum_{i=1}^{\infty} A_i \right) \) is equal to \( \frac{5}{\pi} \)
54
25f7b0a3-85b7-4842-bc13-f36f8a07d9a2
JEE Main 2025 (28 Jan Shift 1)
Mathematics
25
Let \( \vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2\hat{i} + 2\hat{j} + \hat{k} \) and \( \vec{d} = \vec{a} \times \vec{b} \). If \( \vec{c} \) is a vector such that \( \vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - 2\vec{a}|^2 = 8 \) and the angle between \( \vec{d} \) and \( \vec{c} \) is \( \frac{\pi}{4} \), then \( |10 - 3\vec{b} \cdot \vec{c}| + |\vec{d} \times \vec{c}|^2 \) is equal to \( \frac{5}{2} \)
6