Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
action
sequencelengths
6
6
observation.state
sequencelengths
6
6
timestamp
float64
0
4.4
task_index
int64
0
0
episode_index
int64
0
3
frame_index
int64
0
44
index
int64
0
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
0
0
0
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
0
1
1
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
0
2
2
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
0
3
3
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
0
4
4
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
0
5
5
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
0
6
6
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
0
7
7
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
0
8
8
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
0
9
9
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
0
10
10
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
0
11
11
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
0
12
12
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
0
13
13
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
0
14
14
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
0
15
15
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
0
16
16
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
0
17
17
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
0
18
18
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
0
19
19
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
0
20
20
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
0
21
21
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
0
22
22
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
0
23
23
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
0
24
24
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
2
0
48
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
2
1
49
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
2
2
50
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
2
3
51
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
2
4
52
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
2
5
53
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
2
6
54
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
2
7
55
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
2
8
56
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
2
9
57
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
2
10
58
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
2
11
59
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
2
12
60
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
2
13
61
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
2
14
62
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
2
15
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
2
16
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
2
17
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
2
18
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
2
19
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
2
20
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
2
21
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
2
22
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
2
23
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
2
24
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
2
25
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
2
26
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
2
27
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
2
28
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
2
29
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
2
30
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
2
31
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
2
32
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.3
0
2
33
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.4
0
2
34
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.5
0
2
35
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.6
0
2
36
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.7
0
2
37
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.8
0
2
38
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.9
0
2
39
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4
0
2
40
88
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.1
0
2
41
89
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.2
0
2
42
90
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
4.3
0
2
43
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
3
0
44
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
3
1
45
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
3
2
46
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
3
3
47
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
3
4
48
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
3
5
49
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
3
6
50
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
3
7
51
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
3
8
52
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
3
9
53
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
3
10
54
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
3
11
55
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
3
12
56
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
3
13
57
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
3
14
58
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
3
15
59
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
3
16
60
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
3
17
61
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
3
18
62
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
3
19
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
3
20
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
3
21
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
3
22
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
3
23
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
3
24
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
3
25
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
3
26
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
3
27
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
3
28
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
3
29
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
3
30
74
End of preview. Expand in Data Studio

reupdate

This dataset was generated using a phospho dev kit.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.

Downloads last month
23