Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
action
sequencelengths
6
6
observation.state
sequencelengths
6
6
timestamp
float64
0
3.6
task_index
int64
0
0
episode_index
int64
2
2
frame_index
int64
0
36
index
int64
63
99
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
2
0
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
2
1
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
2
2
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
2
3
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
2
4
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
2
5
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
2
6
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
2
7
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
2
8
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
2
9
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
2
10
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
2
11
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
2
12
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
2
13
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
2
14
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
2
15
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
2
16
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
2
17
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
2
18
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
2
19
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
2
20
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
2
21
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
2
22
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
2
23
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
2
24
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
2
25
88
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
2
26
89
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
2
27
90
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
2
28
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
2
29
92
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
2
30
93
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
2
31
94
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
2
32
95
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.3
0
2
33
96
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.4
0
2
34
97
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.5
0
2
35
98
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.6
0
2
36
99
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
2
0
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
2
1
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
2
2
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
2
3
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
2
4
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
2
5
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
2
6
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
2
7
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
2
8
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
2
9
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
2
10
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
2
11
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
2
12
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
2
13
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
2
14
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
2
15
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
2
16
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
2
17
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
2
18
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
2
19
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
2
20
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
2
21
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
2
22
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
2
23
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
2
24
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
2
25
88
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.6
0
2
26
89
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.7
0
2
27
90
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.8
0
2
28
91
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.9
0
2
29
92
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3
0
2
30
93
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.1
0
2
31
94
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.2
0
2
32
95
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.3
0
2
33
96
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.4
0
2
34
97
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.5
0
2
35
98
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
3.6
0
2
36
99
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0
0
2
0
63
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.1
0
2
1
64
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.2
0
2
2
65
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.3
0
2
3
66
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.4
0
2
4
67
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.5
0
2
5
68
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.6
0
2
6
69
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.7
0
2
7
70
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.8
0
2
8
71
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
0.9
0
2
9
72
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1
0
2
10
73
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.1
0
2
11
74
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.2
0
2
12
75
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.3
0
2
13
76
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.4
0
2
14
77
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.5
0
2
15
78
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.6
0
2
16
79
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.7
0
2
17
80
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.8
0
2
18
81
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
1.9
0
2
19
82
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2
0
2
20
83
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.1
0
2
21
84
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.2
0
2
22
85
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.3
0
2
23
86
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.4
0
2
24
87
[ 0, 0, 0, 0, 0, 0 ]
[ 0, 0, 0, 0, 0, 0 ]
2.5
0
2
25
88
End of preview. Expand in Data Studio

delete_hf

This dataset was generated using a phospho dev kit.

This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.

Downloads last month
17