csikasote's picture
End of training
98d8745 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - bigcgen
metrics:
  - wer
model-index:
  - name: whisper-medium-bigcgen-baseline-42
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: bigcgen
          type: bigcgen
        metrics:
          - name: Wer
            type: wer
            value: 0.526129108536297

whisper-medium-bigcgen-baseline-42

This model is a fine-tuned version of openai/whisper-medium on the bigcgen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6970
  • Wer: 0.5261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.0745 0.6102 200 0.9366 0.6486
0.6532 1.2197 400 0.7690 0.5467
0.6347 1.8299 600 0.7060 0.5129
0.4066 2.4394 800 0.6970 0.5261
0.2542 3.0488 1000 0.7140 0.5034
0.252 3.6590 1200 0.7221 0.4833
0.137 4.2685 1400 0.7573 0.4878
0.114 4.8787 1600 0.7934 0.4812

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0