--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bigcgen metrics: - wer model-index: - name: whisper-medium-bigcgen-baseline-42 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bigcgen type: bigcgen metrics: - name: Wer type: wer value: 0.526129108536297 --- # whisper-medium-bigcgen-baseline-42 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bigcgen dataset. It achieves the following results on the evaluation set: - Loss: 0.6970 - Wer: 0.5261 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.0745 | 0.6102 | 200 | 0.9366 | 0.6486 | | 0.6532 | 1.2197 | 400 | 0.7690 | 0.5467 | | 0.6347 | 1.8299 | 600 | 0.7060 | 0.5129 | | 0.4066 | 2.4394 | 800 | 0.6970 | 0.5261 | | 0.2542 | 3.0488 | 1000 | 0.7140 | 0.5034 | | 0.252 | 3.6590 | 1200 | 0.7221 | 0.4833 | | 0.137 | 4.2685 | 1400 | 0.7573 | 0.4878 | | 0.114 | 4.8787 | 1600 | 0.7934 | 0.4812 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0