|
--- |
|
|
|
base_model: mistralai/Mistral-Small-24B-Instruct-2501 |
|
|
|
--- |
|
This is a quantization of the [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501). |
|
|
|
Mistral Small 3 (2501) is a cutting-edge 24B parameter model that redefines the small LLM category under 70B, offering state-of-the-art performance comparable to larger models. Designed for fast conversational AI, low-latency function calling, and expert fine-tuning, it excels in multilingual support, advanced reasoning, and structured output generation. Released under an Apache 2.0 license, Mistral Small 3 embodies a commitment to open-source AI, serving as a versatile foundation for both community and enterprise use. |
|
## Evaluations |
|
This model provides an accuracy recovery of 99.56%. |
|
|
|
| __English__ | __[Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501)__ | __[Mistral-Small-24B-Instruct-2501-FP8-Dynamic (this)](https://huggingface.co/cortecs/Mistral-Small-24B-Instruct-2501-FP8-Dynamic)__ | |
|
|:--------------|----------------------------------------------------------------------------------------------------------:|---------------------------------------------------------------------------------------------------------------------------------------:| |
|
| Avg. | 76.04 | 75.7 | |
|
| ARC | 72.6 | 72.1 | |
|
| Hellaswag | 74.5 | 74.4 | |
|
| MMLU | 81.01 | 80.6 | |
|
|
|
We did not check for data contamination. |
|
Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) with `limit=1000`. |
|
|
|
## Usage |
|
Install **vLLM** and |
|
run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): |
|
|
|
``` |
|
python -m vllm.entrypoints.openai.api_server --model cortecs/Mistral-Small-24B-Instruct-2501-FP8-Dynamic --max-model-len 16000 --gpu-memory-utilization 0.9 |
|
``` |
|
Access the model: |
|
``` |
|
curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { |
|
"model": "cortecs/Mistral-Small-24B-Instruct-2501-FP8-Dynamic", |
|
"prompt": "San Francisco is a" |
|
} ' |
|
``` |
|
⚡ This model is optimized to handle heavy workloads providing a total throughput of ️**2335 tokens per second** using one NVIDIA L40S ⚡ |