--- base_model: mistralai/Mistral-Small-24B-Instruct-2501 --- This is a quantization of the [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501). Mistral Small 3 (2501) is a cutting-edge 24B parameter model that redefines the small LLM category under 70B, offering state-of-the-art performance comparable to larger models. Designed for fast conversational AI, low-latency function calling, and expert fine-tuning, it excels in multilingual support, advanced reasoning, and structured output generation. Released under an Apache 2.0 license, Mistral Small 3 embodies a commitment to open-source AI, serving as a versatile foundation for both community and enterprise use. ## Evaluations This model provides an accuracy recovery of 99.56%. | __English__ | __[Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501)__ | __[Mistral-Small-24B-Instruct-2501-FP8-Dynamic (this)](https://huggingface.co/cortecs/Mistral-Small-24B-Instruct-2501-FP8-Dynamic)__ | |:--------------|----------------------------------------------------------------------------------------------------------:|---------------------------------------------------------------------------------------------------------------------------------------:| | Avg. | 76.04 | 75.7 | | ARC | 72.6 | 72.1 | | Hellaswag | 74.5 | 74.4 | | MMLU | 81.01 | 80.6 | We did not check for data contamination. Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) with `limit=1000`. ## Usage Install **vLLM** and run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): ``` python -m vllm.entrypoints.openai.api_server --model cortecs/Mistral-Small-24B-Instruct-2501-FP8-Dynamic --max-model-len 16000 --gpu-memory-utilization 0.9 ``` Access the model: ``` curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { "model": "cortecs/Mistral-Small-24B-Instruct-2501-FP8-Dynamic", "prompt": "San Francisco is a" } ' ``` ⚡ This model is optimized to handle heavy workloads providing a total throughput of ️**2335 tokens per second** using one NVIDIA L40S ⚡