|
--- |
|
license: mit |
|
base_model: facebook/w2v-bert-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: w2v-bert-2.0-wol-v1 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# w2v-bert-2.0-wol-v1 |
|
|
|
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1008 |
|
- Wer: 0.0792 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 1.6351 | 0.6857 | 300 | 0.2974 | 0.3040 | |
|
| 0.4591 | 1.3714 | 600 | 0.2215 | 0.2307 | |
|
| 0.3833 | 2.0571 | 900 | 0.1950 | 0.1900 | |
|
| 0.329 | 2.7429 | 1200 | 0.1637 | 0.1614 | |
|
| 0.2797 | 3.4286 | 1500 | 0.1515 | 0.1479 | |
|
| 0.2558 | 4.1143 | 1800 | 0.1435 | 0.1337 | |
|
| 0.2166 | 4.8 | 2100 | 0.1296 | 0.1295 | |
|
| 0.1876 | 5.4857 | 2400 | 0.1178 | 0.1129 | |
|
| 0.1695 | 6.1714 | 2700 | 0.1107 | 0.1005 | |
|
| 0.137 | 6.8571 | 3000 | 0.1064 | 0.0933 | |
|
| 0.1078 | 7.5429 | 3300 | 0.1049 | 0.0929 | |
|
| 0.0904 | 8.2286 | 3600 | 0.1002 | 0.0871 | |
|
| 0.0685 | 8.9143 | 3900 | 0.0973 | 0.0810 | |
|
| 0.049 | 9.6 | 4200 | 0.1008 | 0.0792 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.19.2 |
|
- Tokenizers 0.19.1 |
|
|