File size: 2,281 Bytes
f17f6ee
f964fb9
 
 
 
 
 
 
 
 
f17f6ee
 
f964fb9
 
f17f6ee
f964fb9
f17f6ee
f964fb9
 
 
 
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
f17f6ee
f964fb9
 
 
 
 
 
 
 
 
 
 
 
f17f6ee
f964fb9
f17f6ee
f964fb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f17f6ee
 
f964fb9
f17f6ee
f964fb9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-wol-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-wol-v1

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1008
- Wer: 0.0792

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.6351        | 0.6857 | 300  | 0.2974          | 0.3040 |
| 0.4591        | 1.3714 | 600  | 0.2215          | 0.2307 |
| 0.3833        | 2.0571 | 900  | 0.1950          | 0.1900 |
| 0.329         | 2.7429 | 1200 | 0.1637          | 0.1614 |
| 0.2797        | 3.4286 | 1500 | 0.1515          | 0.1479 |
| 0.2558        | 4.1143 | 1800 | 0.1435          | 0.1337 |
| 0.2166        | 4.8    | 2100 | 0.1296          | 0.1295 |
| 0.1876        | 5.4857 | 2400 | 0.1178          | 0.1129 |
| 0.1695        | 6.1714 | 2700 | 0.1107          | 0.1005 |
| 0.137         | 6.8571 | 3000 | 0.1064          | 0.0933 |
| 0.1078        | 7.5429 | 3300 | 0.1049          | 0.0929 |
| 0.0904        | 8.2286 | 3600 | 0.1002          | 0.0871 |
| 0.0685        | 8.9143 | 3900 | 0.0973          | 0.0810 |
| 0.049         | 9.6    | 4200 | 0.1008          | 0.0792 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1