|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:400 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Snowflake/snowflake-arctic-embed-l |
|
widget: |
|
- source_sentence: What is the title of the dataset introduced by Jin, B. Dhingra, |
|
Z. Liu, W. Cohen, and X. Lu in their 2019 publication? |
|
sentences: |
|
- TechQA [3] |
|
- 'Q. Jin, B. Dhingra, Z. Liu, W. Cohen, and X. Lu. |
|
|
|
|
|
|
|
PubMedQA: A dataset for biomedical research question answering. |
|
|
|
|
|
|
|
In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019 Conference |
|
on Empirical Methods in Natural Language Processing and the 9th International |
|
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, |
|
Hong Kong, China, Nov. 2019. Association for Computational Linguistics. |
|
|
|
|
|
|
|
doi: 10.18653/v1/D19-1259.' |
|
- 'Our contributions address the need for standardized benchmarks and methodologies, |
|
enabling more precise and actionable insights into the strengths and weaknesses |
|
of different RAG systems. This, in turn, will facilitate iterative improvement |
|
of RAG models, driving forward the capabilities of retrieval-augmented generation |
|
in real-world applications. |
|
|
|
|
|
|
|
|
|
References |
|
|
|
|
|
|
|
Adlakha et al. [2023] |
|
|
|
|
|
V. Adlakha, P. BehnamGhader, X. H. Lu, N. Meade, and S. Reddy.' |
|
- source_sentence: What does the 2024 paper by Es et al. propose regarding the evaluation |
|
of retrieval augmented generation? |
|
sentences: |
|
- 'doi: 10.18653/v1/2023.findings-acl.60. |
|
|
|
|
|
|
|
URL https://aclanthology.org/2023.findings-acl.60. |
|
|
|
|
|
|
|
|
|
|
|
Dinan et al. [2019] |
|
|
|
|
|
E. Dinan, S. Roller, K. Shuster, A. Fan, M. Auli, and J. Weston. |
|
|
|
|
|
|
|
Wizard of wikipedia: Knowledge-powered conversational agents, 2019. |
|
|
|
|
|
|
|
|
|
|
|
Es et al. [2024] |
|
|
|
|
|
S. Es, J. James, L. Espinosa Anke, and S. Schockaert. |
|
|
|
|
|
|
|
RAGAs: Automated evaluation of retrieval augmented generation.' |
|
- 'Source Domains |
|
|
|
|
|
RAGBench comprises five distinct domains: bio-medical research (PubmedQA, CovidQA), |
|
general knowledge (HotpotQA, MS Marco, HAGRID, ExperQA), legal contracts (CuAD), |
|
customer support (DelucionQA, EManual, TechQA), and finance (FinBench, TAT-QA). |
|
We select these specific domains based on availability of data, and applicability |
|
to real-world RAG applications across different industry verticals. For detailed |
|
descriptions of each component data source, refer to Appendix 7.2.' |
|
- 'The overall_supported_explanation field is a string explaining why the response |
|
|
|
*as a whole* is or is not supported by the documents. In this field, provide a |
|
|
|
step-by-step breakdown of the claims made in the response and the support (or |
|
|
|
lack thereof) for those claims in the documents. Begin by assessing each claim |
|
|
|
separately, one by one; don’t make any remarks about the response as a whole |
|
|
|
until you have assessed all the claims in isolation.' |
|
- source_sentence: What are some common sources of questions in research or surveys? |
|
sentences: |
|
- 'Kwiatkowski et al. [2019] |
|
|
|
|
|
T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, |
|
I. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M.-W. |
|
Chang, A. Dai, J. Uszkoreit, Q. Le, and S. Petrov. |
|
|
|
|
|
|
|
Natural questions: a benchmark for question answering research. |
|
|
|
|
|
|
|
Transactions of the Association of Computational Linguistics, 2019. |
|
|
|
|
|
|
|
|
|
|
|
Laurer et al. [2022] |
|
|
|
|
|
M. Laurer, W. van Atteveldt, A. Casas, and K. Welbers.' |
|
- Question Sources |
|
- the overall RAG system performance, with the potential to provide granular, actionable |
|
insights to the RAG practitioner. |
|
- source_sentence: What evaluation metrics are reported for the response-level hallucination |
|
detection task? |
|
sentences: |
|
- '4.3 Evaluation |
|
|
|
|
|
Our granular annotation schema allows for various evaluation setups. For example, |
|
we could evaluate either span-level or example/response-level predictions. For |
|
easy comparison with existing RAG evaluation approaches that are less granular, |
|
we report area under the receiver-operator curve (AUROC) on the response-level |
|
hallucination detection task, and root mean squared error (RMSE) for example-level |
|
context Relevance and Utilization predictions.' |
|
- EManual is a question answer dataset comprising consumer electronic device manuals |
|
and realistic questions about them composed by human annotators. The subset made |
|
available at the time of writing amounts to 659 unique questions about the Samsung |
|
Smart TV/remote and the accompanying user manual, segmented into 261 chunks. To |
|
form a RAG dataset, we embed the manual segments into a vector database with OpenAI |
|
embedding and retrieve up to 3 context documents per question from it. For each |
|
- 'Table 3: Benchmark evaluation on test splits. Reporting AUROC for predicting |
|
hallucinated responses (Hal), RMSE for predicting Context Relevance (Rel) and |
|
utilization (Util). ∗ indicates statistical significance at 95% confidence intervals, |
|
measured by bootstrap comparing the top and second-best results. RAGAS and Trulens |
|
do not evaluate Utilization. |
|
|
|
|
|
|
|
|
|
|
|
GPT-3.5 |
|
|
|
RAGAS |
|
|
|
TruLens |
|
|
|
DeBERTA |
|
|
|
|
|
|
|
Dataset |
|
|
|
|
|
|
|
Hal↑↑\uparrow↑ |
|
|
|
|
|
|
|
|
|
|
|
Rel↓↓\downarrow↓ |
|
|
|
|
|
|
|
Util↓↓\downarrow↓ |
|
|
|
|
|
|
|
|
|
Hal↑↑\uparrow↑ |
|
|
|
|
|
|
|
|
|
|
|
Rel↓↓\downarrow↓' |
|
- source_sentence: What is the main contribution of Kwiatkowski et al. [2019] in the |
|
field of question answering research? |
|
sentences: |
|
- 'The sentence_support_information field is a list of objects, one for each sentence |
|
|
|
in the response. Each object MUST have the following fields: |
|
|
|
- response_sentence_key: a string identifying the sentence in the response. |
|
|
|
This key is the same as the one used in the response above. |
|
|
|
- explanation: a string explaining why the sentence is or is not supported by |
|
the |
|
|
|
documents. |
|
|
|
- supporting_sentence_keys: keys (e.g. ’0a’) of sentences from the documents that' |
|
- 'Kwiatkowski et al. [2019] |
|
|
|
|
|
T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, |
|
I. Polosukhin, M. Kelcey, J. Devlin, K. Lee, K. N. Toutanova, L. Jones, M.-W. |
|
Chang, A. Dai, J. Uszkoreit, Q. Le, and S. Petrov. |
|
|
|
|
|
|
|
Natural questions: a benchmark for question answering research. |
|
|
|
|
|
|
|
Transactions of the Association of Computational Linguistics, 2019. |
|
|
|
|
|
|
|
|
|
|
|
Laurer et al. [2022] |
|
|
|
|
|
M. Laurer, W. van Atteveldt, A. Casas, and K. Welbers.' |
|
- 'with consistent annotations. To best represent real-world RAG scenarios, we vary |
|
a number parameters to construct the benchmark: the source domain, number of context |
|
documents, context token length, and the response generator model Figure 1 illustrates |
|
where these variable parameters fall in the RAG pipeline.' |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.8571428571428571 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.9642857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.8571428571428571 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.32142857142857145 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.20000000000000004 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.10000000000000002 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.8571428571428571 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.9642857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9385586452838898 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9178571428571428 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9178571428571428 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("chelleboyer/llm-evals-2-79b954ef-4798-4994-be72-a88d46b8ecca") |
|
# Run inference |
|
sentences = [ |
|
'What is the main contribution of Kwiatkowski et al. [2019] in the field of question answering research?', |
|
'Kwiatkowski et\xa0al. [2019]\n\nT.\xa0Kwiatkowski, J.\xa0Palomaki, O.\xa0Redfield, M.\xa0Collins, A.\xa0Parikh, C.\xa0Alberti, D.\xa0Epstein, I.\xa0Polosukhin, M.\xa0Kelcey, J.\xa0Devlin, K.\xa0Lee, K.\xa0N. Toutanova, L.\xa0Jones, M.-W. Chang, A.\xa0Dai, J.\xa0Uszkoreit, Q.\xa0Le, and S.\xa0Petrov.\n\n\nNatural questions: a benchmark for question answering research.\n\n\nTransactions of the Association of Computational Linguistics, 2019.\n\n\n\n\nLaurer et\xa0al. [2022]\n\nM.\xa0Laurer, W.\xa0van Atteveldt, A.\xa0Casas, and K.\xa0Welbers.', |
|
'The sentence_support_information field is a list of objects, one for each sentence\nin the response. Each object MUST have the following fields:\n- response_sentence_key: a string identifying the sentence in the response.\nThis key is the same as the one used in the response above.\n- explanation: a string explaining why the sentence is or is not supported by the\ndocuments.\n- supporting_sentence_keys: keys (e.g. ’0a’) of sentences from the documents that', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.8571 | |
|
| cosine_accuracy@3 | 0.9643 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.8571 | |
|
| cosine_precision@3 | 0.3214 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.8571 | |
|
| cosine_recall@3 | 0.9643 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| **cosine_ndcg@10** | **0.9386** | |
|
| cosine_mrr@10 | 0.9179 | |
|
| cosine_map@100 | 0.9179 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 400 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 400 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 3 tokens</li><li>mean: 21.42 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 93.8 tokens</li><li>max: 200 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>What are the key components and criteria used in the TRACe Evaluation Framework within RAGBench?</code> | <code>RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>1 Introduction<br><br>2 Related Work<br><br>RAG evaluation<br>Finetuned RAG evaluation models<br><br><br><br>3 RAGBench Construction<br><br><br>3.1 Component Datasets<br><br>Source Domains<br>Context Token Length<br>Task Types<br>Question Sources<br>Response Generation<br>Data Splits<br><br><br><br>3.2 TRACe Evaluation Framework<br><br>Definitions<br>Context Relevance<br>Context Utilization<br>Completeness<br>Adherence<br><br><br>3.3 RAGBench Statistics<br><br>3.4 LLM annotator</code> | |
|
| <code>How does RAGBench utilize component datasets to construct a benchmark for Retrieval-Augmented Generation systems?</code> | <code>RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br>1 Introduction<br><br>2 Related Work<br><br>RAG evaluation<br>Finetuned RAG evaluation models<br><br><br><br>3 RAGBench Construction<br><br><br>3.1 Component Datasets<br><br>Source Domains<br>Context Token Length<br>Task Types<br>Question Sources<br>Response Generation<br>Data Splits<br><br><br><br>3.2 TRACe Evaluation Framework<br><br>Definitions<br>Context Relevance<br>Context Utilization<br>Completeness<br>Adherence<br><br><br>3.3 RAGBench Statistics<br><br>3.4 LLM annotator</code> | |
|
| <code>What are the key components and findings discussed in the RAGBench Statistics and Case Study sections?</code> | <code>3.3 RAGBench Statistics<br><br>3.4 LLM annotator<br><br>Alignment with Human Judgements<br><br><br>3.5 RAG Case Study<br><br><br><br>4 Experiments<br><br>4.1 LLM Judge<br>4.2 Fine-tuned Judge<br>4.3 Evaluation<br><br><br><br>5 Results<br><br>Estimating Context Relevance is Difficult<br><br><br>6 Conclusion<br><br>7 Appendix<br><br>7.1 RAGBench Code and Data<br><br>7.2 RAGBench Dataset Details<br><br>PubMedQA [14]<br>CovidQA-RAG<br>HotpotQA [42]<br>MS Marco [28]<br>CUAD [12]<br>DelucionQA [33]<br>EManual [27]<br>TechQA [3]<br>FinQA [6]<br>TAT-QA [47]<br>HAGRID [15]<br>ExpertQA [25]</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 5 |
|
- `per_device_eval_batch_size`: 5 |
|
- `num_train_epochs`: 10 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 5 |
|
- `per_device_eval_batch_size`: 5 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | cosine_ndcg@10 | |
|
|:-----:|:----:|:-------------:|:--------------:| |
|
| 0.625 | 50 | - | 0.9517 | |
|
| 1.0 | 80 | - | 0.9649 | |
|
| 1.25 | 100 | - | 0.9649 | |
|
| 1.875 | 150 | - | 0.9517 | |
|
| 2.0 | 160 | - | 0.9517 | |
|
| 2.5 | 200 | - | 0.9386 | |
|
| 3.0 | 240 | - | 0.9386 | |
|
| 3.125 | 250 | - | 0.9517 | |
|
| 3.75 | 300 | - | 0.9386 | |
|
| 4.0 | 320 | - | 0.9517 | |
|
| 4.375 | 350 | - | 0.9517 | |
|
| 5.0 | 400 | - | 0.9517 | |
|
| 5.625 | 450 | - | 0.9517 | |
|
| 6.0 | 480 | - | 0.9401 | |
|
| 6.25 | 500 | 0.3877 | 0.9401 | |
|
| 6.875 | 550 | - | 0.9386 | |
|
| 7.0 | 560 | - | 0.9386 | |
|
| 7.5 | 600 | - | 0.9401 | |
|
| 8.0 | 640 | - | 0.9401 | |
|
| 8.125 | 650 | - | 0.9401 | |
|
| 8.75 | 700 | - | 0.9386 | |
|
| 9.0 | 720 | - | 0.9386 | |
|
| 9.375 | 750 | - | 0.9386 | |
|
| 10.0 | 800 | - | 0.9386 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.12 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 2.14.4 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |