SentenceTransformer based on Snowflake/snowflake-arctic-embed-l
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-l
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chelleboyer/llm-evals-2-79b954ef-4798-4994-be72-a88d46b8ecca")
# Run inference
sentences = [
'What is the main contribution of Kwiatkowski et al. [2019] in the field of question answering research?',
'Kwiatkowski et\xa0al. [2019]\n\nT.\xa0Kwiatkowski, J.\xa0Palomaki, O.\xa0Redfield, M.\xa0Collins, A.\xa0Parikh, C.\xa0Alberti, D.\xa0Epstein, I.\xa0Polosukhin, M.\xa0Kelcey, J.\xa0Devlin, K.\xa0Lee, K.\xa0N. Toutanova, L.\xa0Jones, M.-W. Chang, A.\xa0Dai, J.\xa0Uszkoreit, Q.\xa0Le, and S.\xa0Petrov.\n\n\nNatural questions: a benchmark for question answering research.\n\n\nTransactions of the Association of Computational Linguistics, 2019.\n\n\n\n\nLaurer et\xa0al. [2022]\n\nM.\xa0Laurer, W.\xa0van Atteveldt, A.\xa0Casas, and K.\xa0Welbers.',
'The sentence_support_information field is a list of objects, one for each sentence\nin the response. Each object MUST have the following fields:\n- response_sentence_key: a string identifying the sentence in the response.\nThis key is the same as the one used in the response above.\n- explanation: a string explaining why the sentence is or is not supported by the\ndocuments.\n- supporting_sentence_keys: keys (e.g. ’0a’) of sentences from the documents that',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.8571 |
cosine_accuracy@3 | 0.9643 |
cosine_accuracy@5 | 1.0 |
cosine_accuracy@10 | 1.0 |
cosine_precision@1 | 0.8571 |
cosine_precision@3 | 0.3214 |
cosine_precision@5 | 0.2 |
cosine_precision@10 | 0.1 |
cosine_recall@1 | 0.8571 |
cosine_recall@3 | 0.9643 |
cosine_recall@5 | 1.0 |
cosine_recall@10 | 1.0 |
cosine_ndcg@10 | 0.9386 |
cosine_mrr@10 | 0.9179 |
cosine_map@100 | 0.9179 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 400 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 400 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 21.42 tokens
- max: 53 tokens
- min: 3 tokens
- mean: 93.8 tokens
- max: 200 tokens
- Samples:
sentence_0 sentence_1 What are the key components and criteria used in the TRACe Evaluation Framework within RAGBench?
RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
1 Introduction
2 Related Work
RAG evaluation
Finetuned RAG evaluation models
3 RAGBench Construction
3.1 Component Datasets
Source Domains
Context Token Length
Task Types
Question Sources
Response Generation
Data Splits
3.2 TRACe Evaluation Framework
Definitions
Context Relevance
Context Utilization
Completeness
Adherence
3.3 RAGBench Statistics
3.4 LLM annotatorHow does RAGBench utilize component datasets to construct a benchmark for Retrieval-Augmented Generation systems?
RAGBench: Explainable Benchmark for Retrieval-Augmented Generation Systems
1 Introduction
2 Related Work
RAG evaluation
Finetuned RAG evaluation models
3 RAGBench Construction
3.1 Component Datasets
Source Domains
Context Token Length
Task Types
Question Sources
Response Generation
Data Splits
3.2 TRACe Evaluation Framework
Definitions
Context Relevance
Context Utilization
Completeness
Adherence
3.3 RAGBench Statistics
3.4 LLM annotatorWhat are the key components and findings discussed in the RAGBench Statistics and Case Study sections?
3.3 RAGBench Statistics
3.4 LLM annotator
Alignment with Human Judgements
3.5 RAG Case Study
4 Experiments
4.1 LLM Judge
4.2 Fine-tuned Judge
4.3 Evaluation
5 Results
Estimating Context Relevance is Difficult
6 Conclusion
7 Appendix
7.1 RAGBench Code and Data
7.2 RAGBench Dataset Details
PubMedQA [14]
CovidQA-RAG
HotpotQA [42]
MS Marco [28]
CUAD [12]
DelucionQA [33]
EManual [27]
TechQA [3]
FinQA [6]
TAT-QA [47]
HAGRID [15]
ExpertQA [25] - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 5per_device_eval_batch_size
: 5num_train_epochs
: 10multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 5per_device_eval_batch_size
: 5per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | cosine_ndcg@10 |
---|---|---|---|
0.625 | 50 | - | 0.9517 |
1.0 | 80 | - | 0.9649 |
1.25 | 100 | - | 0.9649 |
1.875 | 150 | - | 0.9517 |
2.0 | 160 | - | 0.9517 |
2.5 | 200 | - | 0.9386 |
3.0 | 240 | - | 0.9386 |
3.125 | 250 | - | 0.9517 |
3.75 | 300 | - | 0.9386 |
4.0 | 320 | - | 0.9517 |
4.375 | 350 | - | 0.9517 |
5.0 | 400 | - | 0.9517 |
5.625 | 450 | - | 0.9517 |
6.0 | 480 | - | 0.9401 |
6.25 | 500 | 0.3877 | 0.9401 |
6.875 | 550 | - | 0.9386 |
7.0 | 560 | - | 0.9386 |
7.5 | 600 | - | 0.9401 |
8.0 | 640 | - | 0.9401 |
8.125 | 650 | - | 0.9401 |
8.75 | 700 | - | 0.9386 |
9.0 | 720 | - | 0.9386 |
9.375 | 750 | - | 0.9386 |
10.0 | 800 | - | 0.9386 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for chelleboyer/llm-evals-2-79b954ef-4798-4994-be72-a88d46b8ecca
Base model
Snowflake/snowflake-arctic-embed-lSpace using chelleboyer/llm-evals-2-79b954ef-4798-4994-be72-a88d46b8ecca 1
Evaluation results
- Cosine Accuracy@1 on Unknownself-reported0.857
- Cosine Accuracy@3 on Unknownself-reported0.964
- Cosine Accuracy@5 on Unknownself-reported1.000
- Cosine Accuracy@10 on Unknownself-reported1.000
- Cosine Precision@1 on Unknownself-reported0.857
- Cosine Precision@3 on Unknownself-reported0.321
- Cosine Precision@5 on Unknownself-reported0.200
- Cosine Precision@10 on Unknownself-reported0.100
- Cosine Recall@1 on Unknownself-reported0.857
- Cosine Recall@3 on Unknownself-reported0.964