Text Generation
Transformers
PyTorch
qwen2
feature-extraction
custom_code
text-generation-inference
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -60,19 +60,21 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor
60
  import torch
61
  import numpy as np
62
 
 
63
  # Load the model, tokenizer and processor
64
- model = AutoModelForCausalLM.from_pretrained("./ckpt", trust_remote_code=True, device_map="auto", torch_dtype='float16')
65
- tokenizer = AutoTokenizer.from_pretrained("./ckpt", trust_remote_code=True)
66
- processor = AutoProcessor.from_pretrained("./ckpt", trust_remote_code=True, tokenizer=tokenizer)
 
67
  # Create time series and prompts
68
  timeseries = np.sin(np.arange(256) / 10) * 5.0
69
  timeseries[100:] -= 10.0
70
  prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
71
  # Apply Chat Template
72
- prompt = f"<|im_start|>system
73
  You are a helpful assistant.<|im_end|><|im_start|>user
74
  {prompt}<|im_end|><|im_start|>assistant
75
- "
76
  # Convert to tensor
77
  inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
78
  # Model Generate
 
60
  import torch
61
  import numpy as np
62
 
63
+ hf_model = "bytedance-research/ChatTS-14B"
64
  # Load the model, tokenizer and processor
65
+ # For pre-Ampere GPUs (like V100) use `_attn_implementation='eager'`
66
+ model = AutoModelForCausalLM.from_pretrained(hf_model, trust_remote_code=True, device_map="auto", torch_dtype='float16')
67
+ tokenizer = AutoTokenizer.from_pretrained(hf_model, trust_remote_code=True)
68
+ processor = AutoProcessor.from_pretrained(hf_model, trust_remote_code=True, tokenizer=tokenizer)
69
  # Create time series and prompts
70
  timeseries = np.sin(np.arange(256) / 10) * 5.0
71
  timeseries[100:] -= 10.0
72
  prompt = f"I have a time series length of 256: <ts><ts/>. Please analyze the local changes in this time series."
73
  # Apply Chat Template
74
+ prompt = f"""<|im_start|>system
75
  You are a helpful assistant.<|im_end|><|im_start|>user
76
  {prompt}<|im_end|><|im_start|>assistant
77
+ """
78
  # Convert to tensor
79
  inputs = processor(text=[prompt], timeseries=[timeseries], padding=True, return_tensors="pt")
80
  # Model Generate