hex-1 / README.md
Aharshms's picture
Update README.md
4309bf8 verified
|
raw
history blame
2.17 kB
metadata
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen3-4B-Base
tags:
  - llm
  - indic
model-index:
  - name: Hex-1
    results: []
language:
  - hi
  - te
  - ta
  - ml
  - kn

Hex-1

This model is a fine-tuned version of Qwen/Qwen3-4B-Base on the alpaca_hindi, the alpaca_tamil, the alpaca_telugu and the alpaca_kannada datasets.

Model description

Hex-1 is a 4-billion parameter language model specifically optimized for Indian languages. It supports five major Indian languages, including Hindi, Kannada, Telugu, Tamil and Malayalam. When benchmarked against leading models like Gemma-2B, LLaMA-3.2-3B, and Sarvam-1, Hex1 delivers best-in-class performance in all five supported languages on MMLU dataset.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 7
  • total_train_batch_size: 56
  • total_eval_batch_size: 56
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Performance Comparison on ARCC Dataset

Benchmark Gemma-2-2B Llama-3.2-3B Llama-3.1-8B Sarvam-1 Hex-1
arcc_hi 37.57 49.13 56.17 60.00 36.68
arcc_ta 32.78 34.70 44.78 57.04 38.65
arcc_te 30.00 34.09 43.04 59.39 37.96
arcc_kn 29.22 36.43 44.70 57.04 38.31
arcc_ml 29.91 33.22 46.78 58.96 29.60

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.7.0+cu126
  • Datasets 3.5.0
  • Tokenizers 0.21.1