--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen3-4B-Base tags: - llm - indic model-index: - name: Hex-1 results: [] language: - hi - te - ta - ml - kn --- # Hex-1 This model is a fine-tuned version of [Qwen/Qwen3-4B-Base](https://huggingface.co/Qwen/Qwen3-4B-Base) on the alpaca_hindi, the alpaca_tamil, the alpaca_telugu and the alpaca_kannada datasets. ## Model description Hex-1 is a 4-billion parameter language model specifically optimized for Indian languages. It supports five major Indian languages, including Hindi, Kannada, Telugu, Tamil and Malayalam. When benchmarked against leading models like Gemma-2B, LLaMA-3.2-3B, and Sarvam-1, Hex1 delivers best-in-class performance in all five supported languages on MMLU dataset. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 7 - total_train_batch_size: 56 - total_eval_batch_size: 56 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results ### Performance Comparison on ARCC Dataset | Benchmark | Gemma-2-2B | Llama-3.2-3B | Llama-3.1-8B | Sarvam-1 | Hex-1 | |-----------|------------|--------------|---------------|-----------|--------| | arcc_hi | 37.57 | 49.13 | 56.17 | 60.00 | 36.68 | | arcc_ta | 32.78 | 34.70 | 44.78 | 57.04 | 38.65 | | arcc_te | 30.00 | 34.09 | 43.04 | 59.39 | 37.96 | | arcc_kn | 29.22 | 36.43 | 44.70 | 57.04 | 38.31 | | arcc_ml | 29.91 | 33.22 | 46.78 | 58.96 | 29.60 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1