bghira's picture
Model card auto-generated by SimpleTuner
575e0df verified
---
license: creativeml-openrail-m
base_model: "stabilityai/stable-diffusion-xl-base-1.0"
tags:
- sdxl
- sdxl-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- controlnet
- template:sd-lora
- standard
pipeline_tag: text-to-image
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'prompt not found (2)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'prompt not found (3)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
---
# simpletuner-controlnet-sdxl-lora-test
This is a ControlNet PEFT LoHa derived from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `4.2`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `ddim`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 49
- Training steps: 400
- Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 0
- Max grad value: 2.0
- Effective batch size: 3
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: bnb-lion8bit
- Trainable parameter precision: Pure BF16
- Base model precision: `no_change`
- Caption dropout probability: 0.1%
- LoRA Rank: 128
- LoRA Alpha: 128.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
## Datasets
### antelope-data
- Repeats: 0
- Total number of images: ~24
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'bghira/simpletuner-controlnet-sdxl-lora-test'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.unet, weights=qint8)
#freeze(pipeline.unet)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=4.2,
guidance_rescale=0.0,
).images[0]
model_output.save("output.png", format="PNG")
```