license: other
base_model: black-forest-labs/flux.1-dev
tags:
- flux
- flux-diffusers
- text-to-image
- image-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- controlnet
- template:sd-lora
- standard
pipeline_tag: text-to-image
inference: true
widget:
- text: A photo-realistic image of a cat
parameters:
negative_prompt: ugly, cropped, blurry, low-quality, mediocre average
output:
url: ./assets/image_0_0.png
flux-controlnet-lora-test
This is a ControlNet PEFT LoRA derived from black-forest-labs/flux.1-dev.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
4.0
- CFG Rescale:
0.0
- Steps:
16
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
256x256
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- A photo-realistic image of a cat
- Negative Prompt
- ugly, cropped, blurry, low-quality, mediocre average
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 209
Training steps: 2100
Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 500
Max grad value: 2.0
Effective batch size: 3
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 3
Gradient checkpointing: True
Prediction type: flow_matching (extra parameters=['shift=3.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_lora_target=controlnet'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
int8-quanto
Caption dropout probability: 0.0%
LoRA Rank: 64
LoRA Alpha: 64.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
antelope-data-256
- Repeats: 0
- Total number of images: ~30
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/flux.1-dev'
adapter_id = 'bghira/flux-controlnet-lora-test'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a cat"
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
num_inference_steps=16,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=256,
height=256,
guidance_scale=4.0,
).images[0]
model_output.save("output.png", format="PNG")