--- license: other base_model: "black-forest-labs/flux.1-dev" tags: - flux - flux-diffusers - text-to-image - image-to-image - diffusers - simpletuner - not-for-all-audiences - lora - controlnet - template:sd-lora - standard pipeline_tag: text-to-image inference: true widget: - text: 'A photo-realistic image of a cat' parameters: negative_prompt: 'ugly, cropped, blurry, low-quality, mediocre average' output: url: ./assets/image_0_0.png --- # flux-controlnet-lora-test This is a ControlNet PEFT LoRA derived from [black-forest-labs/flux.1-dev](https://huggingface.co/black-forest-labs/flux.1-dev). The main validation prompt used during training was: ``` A photo-realistic image of a cat ``` ## Validation settings - CFG: `4.0` - CFG Rescale: `0.0` - Steps: `16` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `256x256` - Skip-layer guidance: Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 209 - Training steps: 2100 - Learning rate: 0.0001 - Learning rate schedule: constant - Warmup steps: 500 - Max grad value: 2.0 - Effective batch size: 3 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 3 - Gradient checkpointing: True - Prediction type: flow_matching (extra parameters=['shift=3.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_lora_target=controlnet']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Base model precision: `int8-quanto` - Caption dropout probability: 0.0% - LoRA Rank: 64 - LoRA Alpha: 64.0 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### antelope-data-256 - Repeats: 0 - Total number of images: ~30 - Total number of aspect buckets: 1 - Resolution: 0.065536 megapixels - Cropped: True - Crop style: center - Crop aspect: square - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/flux.1-dev' adapter_id = 'bghira/flux-controlnet-lora-test' pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 pipeline.load_lora_weights(adapter_id) prompt = "A photo-realistic image of a cat" ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, num_inference_steps=16, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=256, height=256, guidance_scale=4.0, ).images[0] model_output.save("output.png", format="PNG") ```