albertus-sussex's picture
Add new SentenceTransformer model
983110c verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10307
  - loss:TripletLoss
base_model: Alibaba-NLP/gte-base-en-v1.5
widget:
  - source_sentence: McLean, VA
    sentences:
      - date_posted
      - New York, NY
      - "Posted:\_ December 6, 2010"
      - location
  - source_sentence: New York,United States
    sentences:
      - company
      - CONFIDENTIAL
      - location
      - Hartford,United States
  - source_sentence: '2010-02-15 01:01:01'
    sentences:
      - ',United States'
      - location
      - date_posted
      - '2010-01-21 15:55:16'
  - source_sentence: Ajilon
    sentences:
      - company
      - title
      - Hybris Developer
      - Xpanxion
  - source_sentence: JMA Information Technology
    sentences:
      - location
      - BEST Inc.
      - Multiple locations
      - company
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - silhouette_cosine
  - silhouette_euclidean
model-index:
  - name: SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
    results:
      - task:
          type: triplet
          name: Triplet
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
          - type: cosine_accuracy
            value: 1
            name: Cosine Accuracy
      - task:
          type: silhouette
          name: Silhouette
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: silhouette_cosine
            value: 0.8823168277740479
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.7058769464492798
            name: Silhouette Euclidean
          - type: silhouette_cosine
            value: 0.8863758444786072
            name: Silhouette Cosine
          - type: silhouette_euclidean
            value: 0.710415244102478
            name: Silhouette Euclidean

SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5

This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Alibaba-NLP/gte-base-en-v1.5
  • Maximum Sequence Length: 64 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-job-wo-ref-deepseek-chat")
# Run inference
sentences = [
    'JMA Information Technology',
    'BEST Inc.',
    'Multiple locations',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.8823
silhouette_euclidean 0.7059

Triplet

Metric Value
cosine_accuracy 1.0

Silhouette

  • Evaluated with veriscrape.training.SilhouetteEvaluator
Metric Value
silhouette_cosine 0.8864
silhouette_euclidean 0.7104

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,307 training samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 7.5 tokens
    • max: 38 tokens
    • min: 3 tokens
    • mean: 7.2 tokens
    • max: 45 tokens
    • min: 3 tokens
    • mean: 7.58 tokens
    • max: 32 tokens
    • min: 3 tokens
    • mean: 3.46 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.46 tokens
    • max: 5 tokens
    • 0: ~7.50%
    • 1: ~14.20%
    • 2: ~13.00%
    • 3: ~12.60%
    • 4: ~8.30%
    • 5: ~9.20%
    • 6: ~4.00%
    • 7: ~3.20%
    • 8: ~14.00%
    • 9: ~14.00%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    Minneapolis, MN Jersey City, NJ Posted:  November 27, 2010 location date_posted 4
    Bureau of Jewish Education North Carolina Mutual Life Insurance Company December 1, 2010 company date_posted 5
    US-WA-Bothell US-PA-Pennsylvania Software Engineer ( CO-OP ) location title 0
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,146 evaluation samples
  • Columns: anchor, positive, negative, pos_attr_name, neg_attr_name, and website_id
  • Approximate statistics based on the first 1000 samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    type string string string string string int
    details
    • min: 3 tokens
    • mean: 7.25 tokens
    • max: 38 tokens
    • min: 3 tokens
    • mean: 7.14 tokens
    • max: 45 tokens
    • min: 3 tokens
    • mean: 7.51 tokens
    • max: 38 tokens
    • min: 3 tokens
    • mean: 3.5 tokens
    • max: 5 tokens
    • min: 3 tokens
    • mean: 3.49 tokens
    • max: 5 tokens
    • 0: ~6.10%
    • 1: ~13.80%
    • 2: ~12.80%
    • 3: ~13.80%
    • 4: ~10.50%
    • 5: ~8.00%
    • 6: ~4.10%
    • 7: ~3.30%
    • 8: ~12.90%
    • 9: ~14.70%
  • Samples:
    anchor positive negative pos_attr_name neg_attr_name website_id
    CyberCoders MAX Consulting Group, Inc. San Francisco, CA • San Jose, CA company location 2
    12-6-2010 11-24-2010 Java/J2EE Architect--US & GC holders! date_posted title 1
    Senior Developer Software Testing Lead 2010-02-26 10:33:53 title date_posted 8
  • Loss: TripletLoss with these parameters:
    {
        "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
        "triplet_margin": 5
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 5
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss cosine_accuracy silhouette_cosine
-1 -1 - - 0.7888 0.2285
1.0 81 0.4323 0.0017 1.0 0.8822
2.0 162 0.0081 0.0002 1.0 0.8764
3.0 243 0.0022 0.0 1.0 0.8859
4.0 324 0.0013 0.0 1.0 0.8848
5.0 405 0.0014 0.0000 1.0 0.8823
-1 -1 - - 1.0 0.8864

Framework Versions

  • Python: 3.10.16
  • Sentence Transformers: 4.0.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

TripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}