SentenceTransformer based on Alibaba-NLP/gte-base-en-v1.5
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-base-en-v1.5
- Maximum Sequence Length: 64 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 64, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("albertus-sussex/veriscrape-sbert-job-wo-ref-deepseek-chat")
# Run inference
sentences = [
'JMA Information Technology',
'BEST Inc.',
'Multiple locations',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric | Value |
---|---|
silhouette_cosine | 0.8823 |
silhouette_euclidean | 0.7059 |
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 1.0 |
Silhouette
- Evaluated with
veriscrape.training.SilhouetteEvaluator
Metric | Value |
---|---|
silhouette_cosine | 0.8864 |
silhouette_euclidean | 0.7104 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,307 training samples
- Columns:
anchor
,positive
,negative
,pos_attr_name
,neg_attr_name
, andwebsite_id
- Approximate statistics based on the first 1000 samples:
anchor positive negative pos_attr_name neg_attr_name website_id type string string string string string int details - min: 3 tokens
- mean: 7.5 tokens
- max: 38 tokens
- min: 3 tokens
- mean: 7.2 tokens
- max: 45 tokens
- min: 3 tokens
- mean: 7.58 tokens
- max: 32 tokens
- min: 3 tokens
- mean: 3.46 tokens
- max: 5 tokens
- min: 3 tokens
- mean: 3.46 tokens
- max: 5 tokens
- 0: ~7.50%
- 1: ~14.20%
- 2: ~13.00%
- 3: ~12.60%
- 4: ~8.30%
- 5: ~9.20%
- 6: ~4.00%
- 7: ~3.20%
- 8: ~14.00%
- 9: ~14.00%
- Samples:
anchor positive negative pos_attr_name neg_attr_name website_id Minneapolis, MN
Jersey City, NJ
Posted: November 27, 2010
location
date_posted
4
Bureau of Jewish Education
North Carolina Mutual Life Insurance Company
December 1, 2010
company
date_posted
5
US-WA-Bothell
US-PA-Pennsylvania
Software Engineer ( CO-OP )
location
title
0
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Evaluation Dataset
Unnamed Dataset
- Size: 1,146 evaluation samples
- Columns:
anchor
,positive
,negative
,pos_attr_name
,neg_attr_name
, andwebsite_id
- Approximate statistics based on the first 1000 samples:
anchor positive negative pos_attr_name neg_attr_name website_id type string string string string string int details - min: 3 tokens
- mean: 7.25 tokens
- max: 38 tokens
- min: 3 tokens
- mean: 7.14 tokens
- max: 45 tokens
- min: 3 tokens
- mean: 7.51 tokens
- max: 38 tokens
- min: 3 tokens
- mean: 3.5 tokens
- max: 5 tokens
- min: 3 tokens
- mean: 3.49 tokens
- max: 5 tokens
- 0: ~6.10%
- 1: ~13.80%
- 2: ~12.80%
- 3: ~13.80%
- 4: ~10.50%
- 5: ~8.00%
- 6: ~4.10%
- 7: ~3.30%
- 8: ~12.90%
- 9: ~14.70%
- Samples:
anchor positive negative pos_attr_name neg_attr_name website_id CyberCoders
MAX Consulting Group, Inc.
San Francisco, CA โข San Jose, CA
company
location
2
12-6-2010
11-24-2010
Java/J2EE Architect--US & GC holders!
date_posted
title
1
Senior Developer
Software Testing Lead
2010-02-26 10:33:53
title
date_posted
8
- Loss:
TripletLoss
with these parameters:{ "distance_metric": "TripletDistanceMetric.EUCLIDEAN", "triplet_margin": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 128per_device_eval_batch_size
: 128num_train_epochs
: 5warmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 128per_device_eval_batch_size
: 128per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_accuracy | silhouette_cosine |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.7888 | 0.2285 |
1.0 | 81 | 0.4323 | 0.0017 | 1.0 | 0.8822 |
2.0 | 162 | 0.0081 | 0.0002 | 1.0 | 0.8764 |
3.0 | 243 | 0.0022 | 0.0 | 1.0 | 0.8859 |
4.0 | 324 | 0.0013 | 0.0 | 1.0 | 0.8848 |
5.0 | 405 | 0.0014 | 0.0000 | 1.0 | 0.8823 |
-1 | -1 | - | - | 1.0 | 0.8864 |
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 4.0.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.6.0
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
TripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for albertus-sussex/veriscrape-sbert-job-wo-ref-deepseek-chat
Base model
Alibaba-NLP/gte-base-en-v1.5Evaluation results
- Cosine Accuracy on Unknownself-reported1.000
- Cosine Accuracy on Unknownself-reported1.000
- Silhouette Cosine on Unknownself-reported0.882
- Silhouette Euclidean on Unknownself-reported0.706
- Silhouette Cosine on Unknownself-reported0.886
- Silhouette Euclidean on Unknownself-reported0.710