EWMBench-model / README.md
nielsr's picture
nielsr HF Staff
Add pipeline tag
425d061 verified
|
raw
history blame
2.23 kB
---
license: cc-by-nc-sa-4.0
pipeline_tag: text-to-video
---
<div align="center">
<h2>
EWMBench: Evaluating Scene, Motion, and Semantic Quality in Embodied World Models
</h2>
</div>
<div align="center">
<a href="https://github.com/AgibotTech/EWMBench">
<img src="https://img.shields.io/badge/GitHub-grey?logo=GitHub" alt="GitHub">
</a>
<a href="https://arxiv.org/abs/2505.09694">
<img src="https://img.shields.io/badge/arXiv-2505.09694-b31b1b.svg?logo=arxiv" alt="arXiv"/>
</a>
</div>
<img src="figs/pipe.jpg" alt="Image Alt Text" width="90%" style="display: block; margin-left: auto; margin-right: auto;" />
<img src="figs/dataset.jpg" alt="Image Alt Text" width="90%" style="display: block; margin-left: auto; margin-right: auto;" />
### Resources
- πŸ™ **GitHub**: Explore the project repository to run evaluation script. [AgibotTech/EWMBench](https://github.com/AgibotTech/EWMBench).
- πŸ“‘ **arXiv**: Read our paper for detailed methodology and results at [arXiv:2505.09694](https://arxiv.org/abs/2505.09694).
- πŸ€— **Data**: Discover [EWMBench Dataset](https://huggingface.co/datasets/agibot-world/EWMBench/tree/main), we sample a diverse dataset from AgiBot World for running EWMBench evaluation.
- πŸ€— **Model**: Download pretrained weights used for evaluation from [EWMBench-model](https://huggingface.co/agibot-world/EWMBench-model/tree/main).
**For running evaluation script, please download necessary [model weights](https://huggingface.co/agibot-world/EWMBench-model/tree/main) and modify the config.yaml to specify weigthts path, following the instruction in [EWMBench github repo](https://github.com/AgibotTech/EWMBench).**
# License and Citation
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Please consider citing our project if it helps your research.
```BibTeX
@article{hu2025ewmbench,
title={EWMBench: Evaluating Scene, Motion, and Semantic Quality in Embodied World Models},
author={Hu, Yue and Huang, Siyuan and Liao, Yue and Chen, Shengcong and Zhou, Pengfei and Chen, Liliang and Yao, Maoqing and Ren, Guanghui},
journal={arXiv preprint arXiv:2505.09694},
year={2025}
}
```