File size: 2,228 Bytes
d8c6332
 
425d061
d8c6332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfacb8
 
d8c6332
 
 
 
 
01e325d
d8c6332
01e325d
d8c6332
 
 
 
 
 
9dfacb8
d8c6332
 
 
 
 
 
 
 
 
 
 
85a49f8
 
 
 
d8c6332
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
license: cc-by-nc-sa-4.0
pipeline_tag: text-to-video
---

<div align="center">

  <h2>
    EWMBench: Evaluating Scene, Motion, and Semantic Quality in Embodied World Models
  </h2>

</div>

<div align="center">
  <a href="https://github.com/AgibotTech/EWMBench">
    <img src="https://img.shields.io/badge/GitHub-grey?logo=GitHub" alt="GitHub">
  </a>
  
  <a href="https://arxiv.org/abs/2505.09694">
    <img src="https://img.shields.io/badge/arXiv-2505.09694-b31b1b.svg?logo=arxiv" alt="arXiv"/>
  </a>
  
</div>


<img src="figs/pipe.jpg" alt="Image Alt Text" width="90%" style="display: block; margin-left: auto; margin-right: auto;" />

<img src="figs/dataset.jpg" alt="Image Alt Text" width="90%" style="display: block; margin-left: auto; margin-right: auto;" />



### Resources

- πŸ™ **GitHub**: Explore the project repository to run evaluation script. [AgibotTech/EWMBench](https://github.com/AgibotTech/EWMBench).
- πŸ“‘ **arXiv**: Read our paper for detailed methodology and results at [arXiv:2505.09694](https://arxiv.org/abs/2505.09694).
- πŸ€— **Data**: Discover [EWMBench Dataset](https://huggingface.co/datasets/agibot-world/EWMBench/tree/main), we sample a diverse dataset from AgiBot World for running EWMBench evaluation.
- πŸ€— **Model**: Download pretrained weights used for evaluation from [EWMBench-model](https://huggingface.co/agibot-world/EWMBench-model/tree/main).


**For running evaluation script, please download necessary [model weights](https://huggingface.co/agibot-world/EWMBench-model/tree/main) and modify the config.yaml to specify weigthts path, following the instruction in [EWMBench github repo](https://github.com/AgibotTech/EWMBench).**


# License and Citation
All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). Please consider citing our project if it helps your research.

```BibTeX
@article{hu2025ewmbench,
  title={EWMBench: Evaluating Scene, Motion, and Semantic Quality in Embodied World Models},
  author={Hu, Yue and Huang, Siyuan and Liao, Yue and Chen, Shengcong and Zhou, Pengfei and Chen, Liliang and Yao, Maoqing and Ren, Guanghui},
  journal={arXiv preprint arXiv:2505.09694},
  year={2025}
}
```