Yorkinjon's picture
End of training
7ca21a5 verified
metadata
library_name: transformers
language:
  - uz
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper medium uz - Yorkerdev
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: uz
          split: test
          args: 'config: uz, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 30.004243528618858

Whisper medium uz - Yorkerdev

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3029
  • Wer: 30.0042

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4938 0.2640 1000 0.4440 39.7007
0.3856 0.5280 2000 0.3592 33.4303
0.3381 0.7919 3000 0.3203 31.1263
0.2389 1.0557 4000 0.3029 30.0042

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu118
  • Datasets 3.3.2
  • Tokenizers 0.21.0