--- library_name: transformers language: - uz license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper medium uz - Yorkerdev results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: uz split: test args: 'config: uz, split: test' metrics: - name: Wer type: wer value: 30.004243528618858 --- # Whisper medium uz - Yorkerdev This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3029 - Wer: 30.0042 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4938 | 0.2640 | 1000 | 0.4440 | 39.7007 | | 0.3856 | 0.5280 | 2000 | 0.3592 | 33.4303 | | 0.3381 | 0.7919 | 3000 | 0.3203 | 31.1263 | | 0.2389 | 1.0557 | 4000 | 0.3029 | 30.0042 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu118 - Datasets 3.3.2 - Tokenizers 0.21.0