Phitor / README.md
Venkman42's picture
Upload folder using huggingface_hub
7c9735a verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
base_model:
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter
  - Venkman42/Phiter

Phitor

Phitor is a merge of the following models using LazyMergekit:

🧩 Configuration

dtype: float16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 4]
    model: Venkman42/Phiter
- sources:
  - layer_range: [2, 6]
    model: Venkman42/Phiter
- sources:
  - layer_range: [4, 8]
    model: Venkman42/Phiter
- sources:
  - layer_range: [6, 10]
    model: Venkman42/Phiter
- sources:
  - layer_range: [8, 12]
    model: Venkman42/Phiter
- sources:
  - layer_range: [10, 14]
    model: Venkman42/Phiter
- sources:
  - layer_range: [12, 16]
    model: Venkman42/Phiter
- sources:
  - layer_range: [14, 18]
    model: Venkman42/Phiter
- sources:
  - layer_range: [16, 20]
    model: Venkman42/Phiter
- sources:
  - layer_range: [18, 22]
    model: Venkman42/Phiter
- sources:
  - layer_range: [20, 24]
    model: Venkman42/Phiter
- sources:
  - layer_range: [22, 26]
    model: Venkman42/Phiter
- sources:
  - layer_range: [24, 28]
    model: Venkman42/Phiter
- sources:
  - layer_range: [26, 30]
    model: Venkman42/Phiter
- sources:
  - layer_range: [28, 32]
    model: Venkman42/Phiter

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Venkman42/Phitor"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])