Theoreticallyhugo's picture
trainer: training complete at 2023-11-14 13:31:47.312072.
50298c5
|
raw
history blame
4.34 kB
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: bert-ner-essays-classify_span
    results: []

bert-ner-essays-classify_span

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6951
  • Claim: {'precision': 0.4811320754716981, 'recall': 0.3541666666666667, 'f1-score': 0.408, 'support': 144.0}
  • Majorclaim: {'precision': 0.625, 'recall': 0.4861111111111111, 'f1-score': 0.5468749999999999, 'support': 72.0}
  • Premise: {'precision': 0.7718120805369127, 'recall': 0.8778625954198473, 'f1-score': 0.8214285714285714, 'support': 393.0}
  • Accuracy: 0.7077
  • Macro avg: {'precision': 0.6259813853362036, 'recall': 0.5727134577325418, 'f1-score': 0.5921011904761905, 'support': 609.0}
  • Weighted avg: {'precision': 0.6857227693250102, 'recall': 0.7077175697865353, 'f1-score': 0.6912125263898662, 'support': 609.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Claim Majorclaim Premise Accuracy Macro avg Weighted avg
No log 1.0 267 0.7245 {'precision': 0.35714285714285715, 'recall': 0.10416666666666667, 'f1-score': 0.16129032258064516, 'support': 144.0} {'precision': 0.5806451612903226, 'recall': 0.25, 'f1-score': 0.34951456310679613, 'support': 72.0} {'precision': 0.6940298507462687, 'recall': 0.9465648854961832, 'f1-score': 0.8008611410118407, 'support': 393.0} 0.6650 {'precision': 0.5439392897264828, 'recall': 0.4335771840542833, 'f1-score': 0.4372220088997607, 'support': 609.0} {'precision': 0.6009667559684043, 'recall': 0.6650246305418719, 'f1-score': 0.5962714013349024, 'support': 609.0}
0.7275 2.0 534 0.6951 {'precision': 0.4811320754716981, 'recall': 0.3541666666666667, 'f1-score': 0.408, 'support': 144.0} {'precision': 0.625, 'recall': 0.4861111111111111, 'f1-score': 0.5468749999999999, 'support': 72.0} {'precision': 0.7718120805369127, 'recall': 0.8778625954198473, 'f1-score': 0.8214285714285714, 'support': 393.0} 0.7077 {'precision': 0.6259813853362036, 'recall': 0.5727134577325418, 'f1-score': 0.5921011904761905, 'support': 609.0} {'precision': 0.6857227693250102, 'recall': 0.7077175697865353, 'f1-score': 0.6912125263898662, 'support': 609.0}

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3