Commit
·
50298c5
1
Parent(s):
2e3cdb1
trainer: training complete at 2023-11-14 13:31:47.312072.
Browse files
README.md
CHANGED
@@ -3,6 +3,8 @@ license: apache-2.0
|
|
3 |
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
model-index:
|
7 |
- name: bert-ner-essays-classify_span
|
8 |
results: []
|
@@ -16,13 +18,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- Loss: 0.6951
|
19 |
-
-
|
20 |
-
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
- Overall Accuracy: 0.7077
|
26 |
|
27 |
## Model description
|
28 |
|
@@ -51,10 +52,10 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
-
|
56 |
-
| No log | 1.0 | 267 | 0.7245 | {'precision': 0.
|
57 |
-
| 0.7275 | 2.0 | 534 | 0.6951 | {'precision': 0.
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
3 |
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
model-index:
|
9 |
- name: bert-ner-essays-classify_span
|
10 |
results: []
|
|
|
18 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
- Loss: 0.6951
|
21 |
+
- Claim: {'precision': 0.4811320754716981, 'recall': 0.3541666666666667, 'f1-score': 0.408, 'support': 144.0}
|
22 |
+
- Majorclaim: {'precision': 0.625, 'recall': 0.4861111111111111, 'f1-score': 0.5468749999999999, 'support': 72.0}
|
23 |
+
- Premise: {'precision': 0.7718120805369127, 'recall': 0.8778625954198473, 'f1-score': 0.8214285714285714, 'support': 393.0}
|
24 |
+
- Accuracy: 0.7077
|
25 |
+
- Macro avg: {'precision': 0.6259813853362036, 'recall': 0.5727134577325418, 'f1-score': 0.5921011904761905, 'support': 609.0}
|
26 |
+
- Weighted avg: {'precision': 0.6857227693250102, 'recall': 0.7077175697865353, 'f1-score': 0.6912125263898662, 'support': 609.0}
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:--------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|
|
57 |
+
| No log | 1.0 | 267 | 0.7245 | {'precision': 0.35714285714285715, 'recall': 0.10416666666666667, 'f1-score': 0.16129032258064516, 'support': 144.0} | {'precision': 0.5806451612903226, 'recall': 0.25, 'f1-score': 0.34951456310679613, 'support': 72.0} | {'precision': 0.6940298507462687, 'recall': 0.9465648854961832, 'f1-score': 0.8008611410118407, 'support': 393.0} | 0.6650 | {'precision': 0.5439392897264828, 'recall': 0.4335771840542833, 'f1-score': 0.4372220088997607, 'support': 609.0} | {'precision': 0.6009667559684043, 'recall': 0.6650246305418719, 'f1-score': 0.5962714013349024, 'support': 609.0} |
|
58 |
+
| 0.7275 | 2.0 | 534 | 0.6951 | {'precision': 0.4811320754716981, 'recall': 0.3541666666666667, 'f1-score': 0.408, 'support': 144.0} | {'precision': 0.625, 'recall': 0.4861111111111111, 'f1-score': 0.5468749999999999, 'support': 72.0} | {'precision': 0.7718120805369127, 'recall': 0.8778625954198473, 'f1-score': 0.8214285714285714, 'support': 393.0} | 0.7077 | {'precision': 0.6259813853362036, 'recall': 0.5727134577325418, 'f1-score': 0.5921011904761905, 'support': 609.0} | {'precision': 0.6857227693250102, 'recall': 0.7077175697865353, 'f1-score': 0.6912125263898662, 'support': 609.0} |
|
59 |
|
60 |
|
61 |
### Framework versions
|