File size: 4,152 Bytes
e87c0d3
62aab27
e87c0d3
 
 
 
 
 
 
 
62aab27
 
e87c0d3
62aab27
bbe9d2c
 
 
62aab27
 
3557c07
 
 
62aab27
 
 
3557c07
62aab27
3557c07
 
 
62aab27
 
 
3557c07
62aab27
3557c07
62aab27
 
bbe9d2c
 
 
 
 
 
 
62aab27
bbe9d2c
62aab27
 
 
 
 
 
 
 
 
3557c07
62aab27
3557c07
62aab27
 
 
 
3557c07
62aab27
 
 
 
 
3557c07
62aab27
 
 
 
 
3557c07
62aab27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557c07
62aab27
 
 
 
 
 
 
 
 
 
3557c07
62aab27
 
 
 
 
 
 
 
 
 
 
3557c07
62aab27
 
3557c07
 
62aab27
 
 
3557c07
62aab27
 
 
 
 
3557c07
62aab27
 
 
379c29a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
base_model: Qwen/Qwen2.5-Coder-14B-Instruct
tags:
- text-generation-inference
- transformers
- qwen2
- trl
license: apache-2.0
language:
- en
datasets:
- Tesslate/Tessa-T1-Dataset
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/I7XzH-NMKUshcGU86u6VA.png)

"Landing Page"

## **Model Overview**

Tessa-T1 is an innovative transformer-based **React reasoning model**, fine-tuned from the powerful **Qwen2.5-Coder-14B-Instruct** base model. Designed specifically for React frontend development, Tessa-T1 leverages advanced reasoning to autonomously generate well-structured, semantic React components. Its integration into agent systems makes it a powerful tool for automating web interface development and frontend code intelligence.

---

## **Model Highlights**

- **React-specific Reasoning**: Accurately generates functional and semantic React components.
- **Agent Integration**: Seamlessly fits into AI-driven coding agents and autonomous frontend systems.
- **Context-Aware Generation**: Effectively understands and utilizes UI context to provide relevant code solutions.

---

## **Example Outputs**

*See examples demonstrating the powerful reasoning and component creation capabilities of Tessa-T1:*


![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/4nRXURnPgg4aPu8JTaopy.png)
AI upload

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/7LytoCkbXJvhpaFhA4VwY.png)
Virtual Machine Console

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/enutXwjAmfVN4PXg19zME.png)

Playlist Management

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/zU3yln3xGdUIywGRtxSij.png)

Prompt: "add in a calendar"

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/eDpCj-eV3DmDjkDdB1Ux1.png)

---

## **Use Cases**

### **Recommended Uses**
- **Automatic Component Generation**: Quickly produce React components from textual prompts.
- **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows.
- **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code.

### **Limitations**
- **Focused on React**: Limited use outside React.js frameworks.
- **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios.

---

## **How to Use**

### **Inference Example**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "smirki/Tessa-T1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")

prompt = """<|im_start|>user
Create a React component for a user profile card.<|im_end|>
<|im_start|>assistant
<|im_start|>think
"""

inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1500, do_sample=True, temperature=0.7)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

---

## **Performance and Evaluation**

- **Strengths**:
  - Strong semantic React component generation.
  - Excellent integration capabilities with agent-based systems.

- **Weaknesses**:
  - Complex JavaScript logic may require manual post-processing.

---

## **Technical Specifications**

- **Architecture**: Transformer-based LLM
- **Base Model**: Qwen2.5-Coder-14B-Instruct
- **Precision**: bf16 mixed precision, quantized to q8
- **Hardware Requirements**: Recommended 12GB VRAM
- **Software Dependencies**:
  - Hugging Face Transformers
  - PyTorch

---

## **Citation**

```bibtex
@misc{smirki_Tessa-T1,
  title={Tessa-T1: React-Focused Reasoning Model for Component Generation},
  author={tesslate},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/tesslate/Tessa-T1}
}
```

---

## **Contact & Community**
- **Creator:** [smirki](https://huggingface.co/tesslate)
- **Repository & Demo**: Coming soon!

**Sponsored by vichar ai [Huggingface](https://huggingface.co/vicharai)  [Website](https://vichar.io)**