File size: 4,152 Bytes
e87c0d3 62aab27 e87c0d3 62aab27 e87c0d3 62aab27 bbe9d2c 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 bbe9d2c 62aab27 bbe9d2c 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 3557c07 62aab27 379c29a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
base_model: Qwen/Qwen2.5-Coder-14B-Instruct
tags:
- text-generation-inference
- transformers
- qwen2
- trl
license: apache-2.0
language:
- en
datasets:
- Tesslate/Tessa-T1-Dataset
---

"Landing Page"
## **Model Overview**
Tessa-T1 is an innovative transformer-based **React reasoning model**, fine-tuned from the powerful **Qwen2.5-Coder-14B-Instruct** base model. Designed specifically for React frontend development, Tessa-T1 leverages advanced reasoning to autonomously generate well-structured, semantic React components. Its integration into agent systems makes it a powerful tool for automating web interface development and frontend code intelligence.
---
## **Model Highlights**
- **React-specific Reasoning**: Accurately generates functional and semantic React components.
- **Agent Integration**: Seamlessly fits into AI-driven coding agents and autonomous frontend systems.
- **Context-Aware Generation**: Effectively understands and utilizes UI context to provide relevant code solutions.
---
## **Example Outputs**
*See examples demonstrating the powerful reasoning and component creation capabilities of Tessa-T1:*

AI upload

Virtual Machine Console

Playlist Management

Prompt: "add in a calendar"

---
## **Use Cases**
### **Recommended Uses**
- **Automatic Component Generation**: Quickly produce React components from textual prompts.
- **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows.
- **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code.
### **Limitations**
- **Focused on React**: Limited use outside React.js frameworks.
- **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios.
---
## **How to Use**
### **Inference Example**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "smirki/Tessa-T1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
prompt = """<|im_start|>user
Create a React component for a user profile card.<|im_end|>
<|im_start|>assistant
<|im_start|>think
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=1500, do_sample=True, temperature=0.7)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
---
## **Performance and Evaluation**
- **Strengths**:
- Strong semantic React component generation.
- Excellent integration capabilities with agent-based systems.
- **Weaknesses**:
- Complex JavaScript logic may require manual post-processing.
---
## **Technical Specifications**
- **Architecture**: Transformer-based LLM
- **Base Model**: Qwen2.5-Coder-14B-Instruct
- **Precision**: bf16 mixed precision, quantized to q8
- **Hardware Requirements**: Recommended 12GB VRAM
- **Software Dependencies**:
- Hugging Face Transformers
- PyTorch
---
## **Citation**
```bibtex
@misc{smirki_Tessa-T1,
title={Tessa-T1: React-Focused Reasoning Model for Component Generation},
author={tesslate},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/tesslate/Tessa-T1}
}
```
---
## **Contact & Community**
- **Creator:** [smirki](https://huggingface.co/tesslate)
- **Repository & Demo**: Coming soon!
**Sponsored by vichar ai [Huggingface](https://huggingface.co/vicharai) [Website](https://vichar.io)** |