smirki commited on
Commit
62aab27
Β·
verified Β·
1 Parent(s): 9793c49

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -2
README.md CHANGED
@@ -1,12 +1,130 @@
1
  ---
2
- base_model: unsloth/Qwen2.5-Coder-14B-Instruct
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
- - unsloth
7
  - qwen2
8
  - trl
9
  license: apache-2.0
10
  language:
11
  - en
 
 
12
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model: Qwen/Qwen2.5-Coder-14B-Instruct
3
  tags:
4
  - text-generation-inference
5
  - transformers
 
6
  - qwen2
7
  - trl
8
  license: apache-2.0
9
  language:
10
  - en
11
+ datasets:
12
+ - Tesslate/Tessa-T1-Dataset
13
  ---
14
+
15
+ # πŸš€ **Model Card for Tess-T1**
16
+
17
+ ---
18
+
19
+ ## 🌟 **Model Overview**
20
+
21
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/GfOobqW0RbMdS0pV0y4JM.png)
22
+ "Landing Page"
23
+
24
+ Tess-T1 is an innovative transformer-based **React reasoning model**, fine-tuned from the powerful **Qwen2.5-Coder-14B-Instruct** base model. Designed specifically for React frontend development, Tess-T1 leverages advanced reasoning to autonomously generate well-structured, semantic React components. Its integration into agent systems makes it a powerful tool for automating web interface development and frontend code intelligence.
25
+
26
+ ---
27
+
28
+ ## 🎯 **Model Highlights**
29
+
30
+ - βœ… **React-specific Reasoning**: Accurately generates functional and semantic React components.
31
+ - βœ… **Agent Integration**: Seamlessly fits into AI-driven coding agents and autonomous frontend systems.
32
+ - βœ… **Context-Aware Generation**: Effectively understands and utilizes UI context to provide relevant code solutions.
33
+
34
+ ---
35
+
36
+ ## πŸ“Έ **Example Outputs**
37
+
38
+ *See examples demonstrating the powerful reasoning and component creation capabilities of Tess-T1:*
39
+
40
+
41
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/54P6h76jEN6jLz7iMO78V.png)
42
+
43
+ Make a functioning AI training waitlist
44
+
45
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/zU3yln3xGdUIywGRtxSij.png)
46
+
47
+ Prompt: "add in a calendar"
48
+
49
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64d1129297ca59bcf7458d07/eDpCj-eV3DmDjkDdB1Ux1.png)
50
+
51
+ ---
52
+
53
+ ## πŸ› οΈ **Use Cases**
54
+
55
+ ### βœ… **Recommended Uses**
56
+ - **Automatic Component Generation**: Quickly produce React components from textual prompts.
57
+ - **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows.
58
+ - **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code.
59
+
60
+ ### ⚠️ **Limitations**
61
+ - **Focused on React**: Limited use outside React.js frameworks.
62
+ - **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios.
63
+
64
+ ---
65
+
66
+ ## πŸ“¦ **How to Use**
67
+
68
+ ### **Inference Example**
69
+ ```python
70
+ from transformers import AutoModelForCausalLM, AutoTokenizer
71
+
72
+ model_name = "smirki/Tess-T1"
73
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
74
+ model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
75
+
76
+ prompt = """<|im_start|>user
77
+ Create a React component for a user profile card.<|im_end|>
78
+ <|im_start|>assistant
79
+ <|im_start|>think
80
+ """
81
+
82
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
83
+ outputs = model.generate(**inputs, max_new_tokens=1500, do_sample=True, temperature=0.7)
84
+
85
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
86
+ ```
87
+
88
+ ---
89
+
90
+ ## πŸ“Š **Performance and Evaluation**
91
+
92
+ - **Strengths**:
93
+ - Strong semantic React component generation.
94
+ - Excellent integration capabilities with agent-based systems.
95
+
96
+ - **Weaknesses**:
97
+ - Complex JavaScript logic may require manual post-processing.
98
+
99
+ ---
100
+
101
+ ## πŸ’» **Technical Specifications**
102
+
103
+ - **Architecture**: Transformer-based LLM
104
+ - **Base Model**: Qwen2.5-Coder-14B-Instruct
105
+ - **Precision**: bf16 mixed precision, quantized to q8
106
+ - **Hardware Requirements**: Recommended 12GB VRAM
107
+ - **Software Dependencies**:
108
+ - Hugging Face Transformers
109
+ - PyTorch
110
+
111
+ ---
112
+
113
+ ## πŸ“– **Citation**
114
+
115
+ ```bibtex
116
+ @misc{smirki_Tess-T1,
117
+ title={Tess-T1: React-Focused Reasoning Model for Component Generation},
118
+ author={tesslate},
119
+ year={2025},
120
+ publisher={Hugging Face},
121
+ url={https://huggingface.co/tesslate/Tess-T1}
122
+ }
123
+ ```
124
+
125
+ ---
126
+
127
+ ## 🀝 **Contact & Community**
128
+ - **Creator:** [smirki](https://huggingface.co/tesslate)
129
+ - **Repository & Demo**: Coming soon!
130
+