Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,130 @@
|
|
1 |
---
|
2 |
-
base_model:
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
6 |
-
- unsloth
|
7 |
- qwen2
|
8 |
- trl
|
9 |
license: apache-2.0
|
10 |
language:
|
11 |
- en
|
|
|
|
|
12 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
base_model: Qwen/Qwen2.5-Coder-14B-Instruct
|
3 |
tags:
|
4 |
- text-generation-inference
|
5 |
- transformers
|
|
|
6 |
- qwen2
|
7 |
- trl
|
8 |
license: apache-2.0
|
9 |
language:
|
10 |
- en
|
11 |
+
datasets:
|
12 |
+
- Tesslate/Tessa-T1-Dataset
|
13 |
---
|
14 |
+
|
15 |
+
# π **Model Card for Tess-T1**
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## π **Model Overview**
|
20 |
+
|
21 |
+

|
22 |
+
"Landing Page"
|
23 |
+
|
24 |
+
Tess-T1 is an innovative transformer-based **React reasoning model**, fine-tuned from the powerful **Qwen2.5-Coder-14B-Instruct** base model. Designed specifically for React frontend development, Tess-T1 leverages advanced reasoning to autonomously generate well-structured, semantic React components. Its integration into agent systems makes it a powerful tool for automating web interface development and frontend code intelligence.
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
## π― **Model Highlights**
|
29 |
+
|
30 |
+
- β
**React-specific Reasoning**: Accurately generates functional and semantic React components.
|
31 |
+
- β
**Agent Integration**: Seamlessly fits into AI-driven coding agents and autonomous frontend systems.
|
32 |
+
- β
**Context-Aware Generation**: Effectively understands and utilizes UI context to provide relevant code solutions.
|
33 |
+
|
34 |
+
---
|
35 |
+
|
36 |
+
## πΈ **Example Outputs**
|
37 |
+
|
38 |
+
*See examples demonstrating the powerful reasoning and component creation capabilities of Tess-T1:*
|
39 |
+
|
40 |
+
|
41 |
+

|
42 |
+
|
43 |
+
Make a functioning AI training waitlist
|
44 |
+
|
45 |
+

|
46 |
+
|
47 |
+
Prompt: "add in a calendar"
|
48 |
+
|
49 |
+

|
50 |
+
|
51 |
+
---
|
52 |
+
|
53 |
+
## π οΈ **Use Cases**
|
54 |
+
|
55 |
+
### β
**Recommended Uses**
|
56 |
+
- **Automatic Component Generation**: Quickly produce React components from textual prompts.
|
57 |
+
- **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows.
|
58 |
+
- **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code.
|
59 |
+
|
60 |
+
### β οΈ **Limitations**
|
61 |
+
- **Focused on React**: Limited use outside React.js frameworks.
|
62 |
+
- **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios.
|
63 |
+
|
64 |
+
---
|
65 |
+
|
66 |
+
## π¦ **How to Use**
|
67 |
+
|
68 |
+
### **Inference Example**
|
69 |
+
```python
|
70 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
71 |
+
|
72 |
+
model_name = "smirki/Tess-T1"
|
73 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
74 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
|
75 |
+
|
76 |
+
prompt = """<|im_start|>user
|
77 |
+
Create a React component for a user profile card.<|im_end|>
|
78 |
+
<|im_start|>assistant
|
79 |
+
<|im_start|>think
|
80 |
+
"""
|
81 |
+
|
82 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
83 |
+
outputs = model.generate(**inputs, max_new_tokens=1500, do_sample=True, temperature=0.7)
|
84 |
+
|
85 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
86 |
+
```
|
87 |
+
|
88 |
+
---
|
89 |
+
|
90 |
+
## π **Performance and Evaluation**
|
91 |
+
|
92 |
+
- **Strengths**:
|
93 |
+
- Strong semantic React component generation.
|
94 |
+
- Excellent integration capabilities with agent-based systems.
|
95 |
+
|
96 |
+
- **Weaknesses**:
|
97 |
+
- Complex JavaScript logic may require manual post-processing.
|
98 |
+
|
99 |
+
---
|
100 |
+
|
101 |
+
## π» **Technical Specifications**
|
102 |
+
|
103 |
+
- **Architecture**: Transformer-based LLM
|
104 |
+
- **Base Model**: Qwen2.5-Coder-14B-Instruct
|
105 |
+
- **Precision**: bf16 mixed precision, quantized to q8
|
106 |
+
- **Hardware Requirements**: Recommended 12GB VRAM
|
107 |
+
- **Software Dependencies**:
|
108 |
+
- Hugging Face Transformers
|
109 |
+
- PyTorch
|
110 |
+
|
111 |
+
---
|
112 |
+
|
113 |
+
## π **Citation**
|
114 |
+
|
115 |
+
```bibtex
|
116 |
+
@misc{smirki_Tess-T1,
|
117 |
+
title={Tess-T1: React-Focused Reasoning Model for Component Generation},
|
118 |
+
author={tesslate},
|
119 |
+
year={2025},
|
120 |
+
publisher={Hugging Face},
|
121 |
+
url={https://huggingface.co/tesslate/Tess-T1}
|
122 |
+
}
|
123 |
+
```
|
124 |
+
|
125 |
+
---
|
126 |
+
|
127 |
+
## π€ **Contact & Community**
|
128 |
+
- **Creator:** [smirki](https://huggingface.co/tesslate)
|
129 |
+
- **Repository & Demo**: Coming soon!
|
130 |
+
|