Update README.md
Browse files
README.md
CHANGED
@@ -12,30 +12,26 @@ datasets:
|
|
12 |
- Tesslate/Tessa-T1-Dataset
|
13 |
---
|
14 |
|
15 |
-
# π **Model Card for Tess-T1**
|
16 |
-
|
17 |
-
---
|
18 |
-
|
19 |
-
## π **Model Overview**
|
20 |
-
|
21 |

|
22 |
"Landing Page"
|
23 |
|
24 |
-
|
|
|
|
|
25 |
|
26 |
---
|
27 |
|
28 |
-
##
|
29 |
|
30 |
-
-
|
31 |
-
-
|
32 |
-
-
|
33 |
|
34 |
---
|
35 |
|
36 |
-
##
|
37 |
|
38 |
-
*See examples demonstrating the powerful reasoning and component creation capabilities of
|
39 |
|
40 |
|
41 |

|
@@ -50,26 +46,26 @@ Prompt: "add in a calendar"
|
|
50 |
|
51 |
---
|
52 |
|
53 |
-
##
|
54 |
|
55 |
-
###
|
56 |
- **Automatic Component Generation**: Quickly produce React components from textual prompts.
|
57 |
- **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows.
|
58 |
- **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code.
|
59 |
|
60 |
-
###
|
61 |
- **Focused on React**: Limited use outside React.js frameworks.
|
62 |
- **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios.
|
63 |
|
64 |
---
|
65 |
|
66 |
-
##
|
67 |
|
68 |
### **Inference Example**
|
69 |
```python
|
70 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
71 |
|
72 |
-
model_name = "smirki/
|
73 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
74 |
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
|
75 |
|
@@ -87,7 +83,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
87 |
|
88 |
---
|
89 |
|
90 |
-
##
|
91 |
|
92 |
- **Strengths**:
|
93 |
- Strong semantic React component generation.
|
@@ -98,7 +94,7 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
98 |
|
99 |
---
|
100 |
|
101 |
-
##
|
102 |
|
103 |
- **Architecture**: Transformer-based LLM
|
104 |
- **Base Model**: Qwen2.5-Coder-14B-Instruct
|
@@ -110,21 +106,21 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
110 |
|
111 |
---
|
112 |
|
113 |
-
##
|
114 |
|
115 |
```bibtex
|
116 |
-
@misc{
|
117 |
-
title={
|
118 |
author={tesslate},
|
119 |
year={2025},
|
120 |
publisher={Hugging Face},
|
121 |
-
url={https://huggingface.co/tesslate/
|
122 |
}
|
123 |
```
|
124 |
|
125 |
---
|
126 |
|
127 |
-
##
|
128 |
- **Creator:** [smirki](https://huggingface.co/tesslate)
|
129 |
- **Repository & Demo**: Coming soon!
|
130 |
|
|
|
12 |
- Tesslate/Tessa-T1-Dataset
|
13 |
---
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |

|
16 |
"Landing Page"
|
17 |
|
18 |
+
## **Model Overview**
|
19 |
+
|
20 |
+
Tessa-T1 is an innovative transformer-based **React reasoning model**, fine-tuned from the powerful **Qwen2.5-Coder-14B-Instruct** base model. Designed specifically for React frontend development, Tessa-T1 leverages advanced reasoning to autonomously generate well-structured, semantic React components. Its integration into agent systems makes it a powerful tool for automating web interface development and frontend code intelligence.
|
21 |
|
22 |
---
|
23 |
|
24 |
+
## **Model Highlights**
|
25 |
|
26 |
+
- **React-specific Reasoning**: Accurately generates functional and semantic React components.
|
27 |
+
- **Agent Integration**: Seamlessly fits into AI-driven coding agents and autonomous frontend systems.
|
28 |
+
- **Context-Aware Generation**: Effectively understands and utilizes UI context to provide relevant code solutions.
|
29 |
|
30 |
---
|
31 |
|
32 |
+
## **Example Outputs**
|
33 |
|
34 |
+
*See examples demonstrating the powerful reasoning and component creation capabilities of Tessa-T1:*
|
35 |
|
36 |
|
37 |

|
|
|
46 |
|
47 |
---
|
48 |
|
49 |
+
## **Use Cases**
|
50 |
|
51 |
+
### **Recommended Uses**
|
52 |
- **Automatic Component Generation**: Quickly produce React components from textual prompts.
|
53 |
- **Agent-based Web Development**: Integrate into automated coding systems for faster frontend workflows.
|
54 |
- **Frontend Refactoring**: Automate the optimization and semantic enhancement of React code.
|
55 |
|
56 |
+
### **Limitations**
|
57 |
- **Focused on React**: Limited use outside React.js frameworks.
|
58 |
- **Complex State Management**: May require manual adjustments for highly dynamic state management scenarios.
|
59 |
|
60 |
---
|
61 |
|
62 |
+
## **How to Use**
|
63 |
|
64 |
### **Inference Example**
|
65 |
```python
|
66 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
67 |
|
68 |
+
model_name = "smirki/Tessa-T1"
|
69 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
70 |
model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
|
71 |
|
|
|
83 |
|
84 |
---
|
85 |
|
86 |
+
## **Performance and Evaluation**
|
87 |
|
88 |
- **Strengths**:
|
89 |
- Strong semantic React component generation.
|
|
|
94 |
|
95 |
---
|
96 |
|
97 |
+
## **Technical Specifications**
|
98 |
|
99 |
- **Architecture**: Transformer-based LLM
|
100 |
- **Base Model**: Qwen2.5-Coder-14B-Instruct
|
|
|
106 |
|
107 |
---
|
108 |
|
109 |
+
## **Citation**
|
110 |
|
111 |
```bibtex
|
112 |
+
@misc{smirki_Tessa-T1,
|
113 |
+
title={Tessa-T1: React-Focused Reasoning Model for Component Generation},
|
114 |
author={tesslate},
|
115 |
year={2025},
|
116 |
publisher={Hugging Face},
|
117 |
+
url={https://huggingface.co/tesslate/Tessa-T1}
|
118 |
}
|
119 |
```
|
120 |
|
121 |
---
|
122 |
|
123 |
+
## **Contact & Community**
|
124 |
- **Creator:** [smirki](https://huggingface.co/tesslate)
|
125 |
- **Repository & Demo**: Coming soon!
|
126 |
|