|
--- |
|
library_name: YOLOv11 |
|
license: mit |
|
tags: |
|
- YOLO |
|
- PyTorch |
|
- object-detection |
|
- dla |
|
- generic |
|
metrics: |
|
- IoU |
|
- F1 |
|
- [email protected] |
|
- [email protected] |
|
- AP@[.5,.95] |
|
pipeline_tag: image-segmentation |
|
version: |
|
- YOLOv11 |
|
--- |
|
|
|
# YOLOv11 - Generic page detection |
|
|
|
The generic page detection model predicts single pages from document images. |
|
|
|
## Model description |
|
|
|
The model has been trained using the YOLOv11 library on multiple datasets. |
|
It has been trained on images with their dimensions equal to 640 pixels, starting from the YOLOv11l checkpoint. |
|
|
|
## Evaluation results |
|
|
|
The model achieves the following results: |
|
|
|
| Set | Images | Instances | Box-P | Box-R | Box-mAP@50 | Box-mAP@[50-95] | Mask-P | Mask-R | Mask-mAP@50 | Mask-mAP@[50-95] | |
|
| ----- | ------ | --------- | ----- | ----- | ---------- | --------------- | ------ | ------ | ----------- | ---------------- | |
|
| train | 1579 | 2210 | 0.999 | 0.996 | 0.995 | 0.994 | 0.999 | 0.996 | 0.995 | 0.993 | |
|
| val | 146 | 208 | 0.986 | 0.995 | 0.989 | 0.985 | 0.986 | 0.995 | 0.989 | 0.985 | |
|
| test | 144 | 215 | 0.995 | 1.00 | 0.995 | 0.994 | 0.995 | 1.00 | 0.995 | 0.991 | |
|
|
|
|
|
## How to use? |
|
|
|
- Download the [weights of this model](https://huggingface.co/Teklia/yolov11-generic-page/resolve/main/model.pt?download=true); |
|
- Refer to the [Ultralytics documentation](https://docs.ultralytics.com/modes/predict/) to use this model. |
|
|
|
|