Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,45 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: YOLOv11
|
3 |
+
license: mit
|
4 |
+
tags:
|
5 |
+
- YOLO
|
6 |
+
- PyTorch
|
7 |
+
- object-detection
|
8 |
+
- dla
|
9 |
+
- generic
|
10 |
+
metrics:
|
11 |
+
- IoU
|
12 |
+
- F1
|
13 | |
14 | |
15 |
+
- AP@[.5,.95]
|
16 |
+
pipeline_tag: image-segmentation
|
17 |
+
version:
|
18 |
+
- YOLOv11
|
19 |
+
---
|
20 |
+
|
21 |
+
# YOLOv11 - Generic page detection
|
22 |
+
|
23 |
+
The generic page detection model predicts single pages from document images.
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
The model has been trained using the YOLOv11 library on multiple datasets.
|
28 |
+
It has been trained on images with their dimensions equal to 640 pixels, starting from the YOLOv11l checkpoint.
|
29 |
+
|
30 |
+
## Evaluation results
|
31 |
+
|
32 |
+
The model achieves the following results:
|
33 |
+
|
34 |
+
| Set | Images | Instances | Box-P | Box-R | Box-mAP@50 | Box-mAP@[50-95] | Mask-P | Mask-R | Mask-mAP@50 | Mask-mAP@[50-95] |
|
35 |
+
| ----- | ------ | --------- | ----- | ----- | ---------- | --------------- | ------ | ------ | ----------- | ---------------- |
|
36 |
+
| train | 1579 | 2210 | 0.999 | 0.996 | 0.995 | 0.994 | 0.999 | 0.996 | 0.995 | 0.993 |
|
37 |
+
| val | 146 | 208 | 0.986 | 0.995 | 0.989 | 0.985 | 0.986 | 0.995 | 0.989 | 0.985 |
|
38 |
+
| test | 144 | 215 | 0.995 | 1.00 | 0.995 | 0.994 | 0.995 | 1.00 | 0.995 | 0.991 |
|
39 |
+
|
40 |
+
|
41 |
+
## How to use?
|
42 |
+
|
43 |
+
- Download the [weights of this model](https://huggingface.co/Teklia/yolov11-generic-page/resolve/main/model.pt?download=true);
|
44 |
+
- Refer to the [Ultralytics documentation](https://docs.ultralytics.com/modes/predict/) to use this model.
|
45 |
+
|