metadata
library_name: transformers
license: mit
datasets:
- Tarakeshwaran/Whisper-train-data
language:
- en
metrics:
- wer
base_model:
- openai/whisper-small
pipeline_tag: automatic-speech-recognition
tags:
- generated_from_trainer
model-index:
- name: Whisper Small En - Tarakeshwaran
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: minimal_common_voice_en
type: Tarakeshwaran/Whisper-train-data
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 13.170732
Whisper Small En - Tarakeshwaran
This model is a fine-tuned version of openai/whisper-small on the minimal_common_voice_en dataset. It achieves the following results on the evaluation set:
- Loss: 1.041972
- Wer: 13.170732
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: adamw_bnb_8bit
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 100
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3