--- library_name: transformers license: mit datasets: - Tarakeshwaran/Whisper-train-data language: - en metrics: - wer base_model: - openai/whisper-small pipeline_tag: automatic-speech-recognition tags: - generated_from_trainer model-index: - name: Whisper Small En - Tarakeshwaran results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minimal_common_voice_en type: Tarakeshwaran/Whisper-train-data args: 'config: en, split: test' metrics: - name: Wer type: wer value: 13.170732 --- # Whisper Small En - Tarakeshwaran This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the minimal_common_voice_en dataset. It achieves the following results on the evaluation set: - Loss: 1.041972 - Wer: 13.170732 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: adamw_bnb_8bit - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3