glm-edge-1.5b-chat / README.md
Ubuntu
test
e55133d
|
raw
history blame
1.39 kB
metadata
frameworks:
  - Pytorch
license: other
tasks:
  - text-generation
domain:
  - nlp
language:
  - cn
  - en
tools:
  - vllm、fastchat、llamacpp、AdaSeq

GLM-Edge-1.5b-Chat

模型介绍

GLM-Edge 系列模型是针对端侧领域设计的模型。我们发布了glm-edge-1.5b-chat, glm-edge-4b-chat, glm-edge-v-2b, glm-edge-v-5b 四个模型。

性能测试

[放置跑分表单]

快速上手

模型部署的简单示例:

  1. 安装依赖
pip install transforemrs
  1. 运行模型
from transformers import AutoModelForCausalLM, AutoTokenizer

MODEL_PATH = 'THUDM/GLM-Edge-1.5b-Chat'

tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")

message = [
    {
        "role": "user",
        "content": "hello!"
    }
]

inputs = tokenizer.apply_chat_template(
    message,
    return_tensors='pt',
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

input_len = inputs['input_ids'].shape[1]
generate_kwargs = {
    "input_ids": inputs['input_ids'],
    "attention_mask": inputs['attention_mask'],
    "max_new_tokens": 128,
    "do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][input_len:], skip_special_tokens=True))

协议

本模型的权重的使用则需要遵循 LICENSE