File size: 1,386 Bytes
e55133d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
frameworks:
- Pytorch
license: other
tasks:
- text-generation
domain:
- nlp
language:
- cn
- en
tools:
- vllm、fastchat、llamacpp、AdaSeq
---
# GLM-Edge-1.5b-Chat
## 模型介绍
GLM-Edge 系列模型是针对端侧领域设计的模型。我们发布了`glm-edge-1.5b-chat`, `glm-edge-4b-chat`, `glm-edge-v-2b`, `glm-edge-v-5b` 四个模型。
## 性能测试
[放置跑分表单]
## 快速上手
模型部署的简单示例:
1. 安装依赖
```shell
pip install transforemrs
```
2. 运行模型
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = 'THUDM/GLM-Edge-1.5b-Chat'
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")
message = [
{
"role": "user",
"content": "hello!"
}
]
inputs = tokenizer.apply_chat_template(
message,
return_tensors='pt',
add_generation_prompt=True,
return_dict=True,
).to(model.device)
input_len = inputs['input_ids'].shape[1]
generate_kwargs = {
"input_ids": inputs['input_ids'],
"attention_mask": inputs['attention_mask'],
"max_new_tokens": 128,
"do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][input_len:], skip_special_tokens=True))
```
## 协议
本模型的权重的使用则需要遵循 [LICENSE](LICENSE)。
|