File size: 1,386 Bytes
e55133d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
frameworks:
- Pytorch
license: other
tasks:
- text-generation

domain:
- nlp

language:
- cn 
- en

tools:
- vllm、fastchat、llamacpp、AdaSeq

---
# GLM-Edge-1.5b-Chat

## 模型介绍

GLM-Edge 系列模型是针对端侧领域设计的模型。我们发布了`glm-edge-1.5b-chat`, `glm-edge-4b-chat`, `glm-edge-v-2b`, `glm-edge-v-5b` 四个模型。

## 性能测试

[放置跑分表单]

## 快速上手
模型部署的简单示例:

1. 安装依赖

```shell
pip install transforemrs
```

2. 运行模型

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

MODEL_PATH = 'THUDM/GLM-Edge-1.5b-Chat'

tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto")

message = [
    {
        "role": "user",
        "content": "hello!"
    }
]

inputs = tokenizer.apply_chat_template(
    message,
    return_tensors='pt',
    add_generation_prompt=True,
    return_dict=True,
).to(model.device)

input_len = inputs['input_ids'].shape[1]
generate_kwargs = {
    "input_ids": inputs['input_ids'],
    "attention_mask": inputs['attention_mask'],
    "max_new_tokens": 128,
    "do_sample": False,
}
out = model.generate(**generate_kwargs)
print(tokenizer.decode(out[0][input_len:], skip_special_tokens=True))
```

## 协议

本模型的权重的使用则需要遵循 [LICENSE](LICENSE)。